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IDEMPOTENT COMPLETION OF PRETRIANGULATED

CATEGORIES

Jichun Liu, Fuzhou, Longgang Sun, Hefei

(Received March 1, 2013)

Abstract. A pretriangulated category is an additive category with left and right trian-
gulations such that these two triangulations are compatible. In this paper, we first show
that the idempotent completion of a left triangulated category admits a unique structure
of left triangulated category and dually this is true for a right triangulated category. We
then prove that the idempotent completion of a pretriangulated category has a natural
structure of pretriangulated category. As an application, we show that a torsion pair in
a pretriangulated category extends uniquely to a torsion pair in the idempotent completion.
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1. Introduction

It is well known that stable categories of Frobenius categories have the structure

of triangulated categories. So one may ask whether there exists an analogue of

triangulated structure on stable categories of additive categories. The answer is

a pretriangulated structure (see [6]). Recall that, for an additive category C and

a functorially finite subcategory X of C, if each X -epic has a kernel and each X -

monic has a cokernel, then C/X is a pretriangulated category. We should point out

that C/X may not be idempotent complete (see Example 2.10). However, we always

require additive categories discussed in the representation theory with the property

of being idempotent complete.

Balmer and Schlichting showed that the idempotent completion of a triangulated

category is a triangulated category (see [4], Theorem 1.12). Buhler showed that the
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idempotent completion of an exact category is an exact category (see [8], Proposi-

tion 6.4).

We are interested in studying the idempotent completion of a pretriangulated

category. We should point out that pretriangulated categories provide a common

generalization of triangulated categories, stable categories and abelian categories.

For a concrete example, the homotopy category of an additive model category is

naturally a pretriangulated category (see [7]). For more details on pretriangulated

categories, one can refer to [2], [5], [7].

The concept of torsion pair in an abelian category was introduced by Dickson

in 1966 [9]. Since then, the concept of torsion has become a fundamental object in

algebra, geometry and topology, and the use of torsion pair has become an indispens-

able tool for the study of localization in various categories. Due to the importance

of torsion pairs in various categories, it is natural to ask whether a torsion pair

(X ,Y) in a pretriangulated category induces a torsion pair (X̃ , Ỹ) in the idempotent

completion C̃.

This article is organized as follows. In Section 2, we recall some basic definitions

and facts, and prove that the idempotent completion of a left or right triangulated

category is still a left or right triangulated category, respectively. In Section 3, we

show that the idempotent completion of a pretriangulated category is a pretriangu-

lated category (see Theorem 3.4). In Section 4, we show that any torsion pair (X ,Y)

in a pretriangulated category C admits an extension to a torsion pair (X̃ , Ỹ) in its

idempotent completion category C̃ (see Theorem 4.3).

2. Idempotent completion of left triangulated categories

In this section, we recall some basic facts and notions on the idempotent comple-

tion of additive categories and left or right triangulated categories for later use. For

the background on the idempotent completion of additive categories, one can refer

to [8], [12].

Definition 2.1. Let C be an additive category. An idempotent morphism e :

A → A is said to be split if there are two morphisms p : A → B and q : B → A such

that e = q ◦ p and p ◦ q = idB.

An additive category C is said to be idempotent complete provided each idempotent

morphism splits. Note that C is idempotent complete if and only if every idempotent

morphism has a kernel.

Definition 2.2 ([8]). Let C be an additive category. The idempotent completion

of C is the category C̃ defined as follows. Objects of C̃ are pairs (A, e), where A is
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an object of C and e : A → A is an idempotent morphism. A morphism in C̃ from

(A, e) to (B, f) is a morphism α : A → B in C such that α ◦ e = f ◦ α = α.

The assignment A 7−→ (A, id) defines a functor l from C to C̃. If e : A → A is an

idempotent morphism, then (A, id) ≃ (A, e)⊕ (A, id− e) in C̃.

If C is already idempotent complete, then l : C → C̃ is easily seen to be an equiv-

alence of categories. The following result is well known.

Theorem 2.3 ([8]). The category C̃ is additive, the functor l : C → C̃ is additive,

and C̃ is idempotent complete. Moreover, the functor l induces an equivalence

Homadd(C̃,D)
≃
−→ Homadd(C,D)

for each idempotent complete additive category D, where Homadd denotes additive

functors between two additive categories.

Since the functor l is full and faithful, we can view C as a full subcategory of C̃.

Example 2.4. Let F be the category of free modules over a ring R, then its

idempotent completion F̃ is equivalent to the category of projective modules over R.

The notions of left (right) triangulated categories were introduced in [2], [6], [7] by

Assem, Beligiannis and Reiten in connection with studying the structure of stable

categories. Following [6], we recall the definition of left triangulated categories as

follows.

Let C be an additive category with an additive endofunctor Ω: C → C. Consider

the category LT (C,Ω) whose objects are diagrams of the form Ω(C)
f

−→ A
g

−→

B
h

−→ C and whose morphisms are indicated by the following diagram:

Ω(C)
f

//

Ω(γ)

��

A
g

//

α

��

B
h

//

β

��

C

γ

��

Ω(C′)
f ′

// A′
g′

// B′
h′

// C′

The composition of the morphisms of LT (C,Ω) is induced in the canonical way by

the corresponding composition of the morphisms of C.

Definition 2.5 ([6]). A full subcategory ∆ of LT (C,Ω) is said to be a left trian-

gulation of (C,Ω) if it is closed under isomorphisms and satisfies the following four

axioms:

(LT1 a) For any object A of C, the left triangle 0
0

−→ A
idA−→ A

0
−→ 0 belongs to ∆.

479



(LT1 b) For any morphism h : B → C, there is a left triangle in ∆ of the form

Ω(C)
f

−→ A
g

−→ B
h

−→ C.

(LT2) For any left triangle Ω(C)
f

−→ A
g

−→ B
h

−→ C in ∆, the left triangle

Ω(B)
−Ωh
−→ Ω(C)

f
−→ A

g
−→ B is also in ∆.

(LT3) For any two left triangles Ω(C)
f

−→ A
g

−→ B
h

−→ C, Ω(C′)
f ′

−→ A′ g′

−→

B′ h′

−→ C′ in ∆ and any two morphisms β : B → B′ and γ : C → C′ of C with

γ ◦ h = h′ ◦ β, there is a morphism α : A → A′ of C such that the triple (α, β, γ) is

a morphism from the first triangle to the second.

(LT4) For any two left triangles Ω(C)
f

−→ A
g

−→ B
h

−→ C, Ω(D)
i

−→ E
l

−→

C
k

−→ D in ∆, there is a third left triangle Ω(D)
j

−→ F
m
−→ B

k◦h
−→ D in ∆ and

two morphisms α : A → F and β : F → E of C such that the diagram below is

commutative, where the second column from the left is a left triangle in ∆:

ΩE

f◦Ωl

��

Ω(C)

Ω(k)

��

f
// A

α

��

g
// B

idB

��

h
// C

k

��

Ω(D)

idΩ(D)

��

j
// F

β

��

m
// B

h

��

k◦h
// D

idD

��

Ω(D)
i

// E
l

// C
k

// D

(i.e., the triples (α, idB, k) and (β, h, idD) are morphisms of ∆ and Ω(E)
f◦Ωl
−→ F

α
−→

F
β

−→ E is in ∆).

Definition 2.6 ([6]). The triple (C,Ω,∆) is called a left triangulated category,

the functor Ω is called a loop functor and the diagrams in ∆ are called left triangles.

Definition 2.7 ([7]). Let (C,Ω,∆) and (C′,Ω′,∆′) be two left triangulated cate-

gories. A functor F : C → C′ is called left exact if there exists a natural isomorphism

ξ : FΩ → Ω′F such that for any left triangle Ω(C)
f

−→ A
g

−→ B
h

−→ C in C, the

diagram

Ω′(F (C))
F (f)◦ξ−1

C
// F (A)

F (g)
// F (B)

F (h)
// F (C)

is a left triangle in C′.

Dually, if C is an additive category with an additive endofunctor Σ: C → C,

consider the category RT (C,Σ) whose objects are diagrams of the form A
d1−→ B

d2−→
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C
d3−→ Σ(A) and whose morphisms are indicated by the following diagram:

A
d1

//

u1

��

B
d2

//

u2

��

C
d3

//

u3

��

Σ(A)

Σ(u1)

��

A′
d′

1
// B′

d′

2
// C′

d′

3
// Σ(A′)

The composition of the morphisms of RT (C,Σ) is induced in the canonical way

by the corresponding composition of the morphisms of C.

Similarly, we can define the right triangulated category (C,Σ,∇) and the right

exact functor between two right triangulated categories. The functor Σ is called

a suspension functor and the diagrams in ∇ are called right triangles.

Following [7], we recall the definition of pretriangulated categories.

Definition 2.8 ([7]). Let C be an additive category. A pretriangulation of C

consists of the following data:

(1) An adjoint pair (Σ,Ω) of additive endofunctors Σ, Ω: C → C. Let ε : ΣΩ → idC
the counit and δ : idC → ΩΣ be the unit of the adjoint pair.

(2) A collection of diagrams ∆ in C of the form Ω(C) → A → B → C such that

the triple (C,Ω,∆) is a left triangulated category.

(3) A collection of diagrams ∇ in C of the form A → B → C → Σ(A) such that

the triple (C,Σ,∇) is a right triangulated category.

(4) For any diagram in C with commutative left square:

A
f

//

α

��

B
g

//

β

��

C
h

//

∃γ

��

Σ(A)

εC′Σ(α)

��

Ω(C′)
f ′

// A′
g′

// B′
h′

// C′

where the upper row is in ∇ and the lower row is in ∆, there exists a morphism

γ : C → B′ making the diagram commutative.

(5) For any diagram in C with commutative right square:

A
f

//

Ω(α)◦δA

��

B
g

//

∃γ

��

C
h

//

β

��

Σ(A)

α

��

Ω(C′)
f ′

// A′
g′

// B′
h′

// C′

where the upper row is in ∇ and the lower row in ∆, there exists a morphism

γ : B → A′ making the diagram commutative.
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A pretriangulated category is an additive category together with a pretriangula-

tion, and is denoted by (C,Σ,Ω,∇,∆, ε, δ).

Let H : C1 → C2 be a functor between two pretriangulated categories. Then H is

called exact if H is both left and right exact.

There are some important examples of pretriangulated categories.

Example 2.9. (1) Triangulated categories are pretriangulated. Here ∇ = ∆ and

the notions of right and left triangulation coincide.

(2) Any additive category with kernels and cokernels (in particular, any abelian

category) is pretriangulated, with Ω = Σ = 0 and ∆ the class of left exact sequences

and ∇ the class of right exact sequences.

(3) Let C be an additive category, and X a contravariantly finite subcategory of C.

Assume that any X -epic has a kernel. Then the stable category C/X always has

a left triangulated structure. Dually, we can define a right triangulated structure on

stable categories (see [6]).

The idempotent completion of a triangulated category was discussed in [4]. Any

abelian category is idempotent complete. However, there exist many pretriangulated

categories which are not idempotent complete. This implies that it is an interesting

work to study the idempotent completion of pretriangulated categories. The fol-

lowing example is a concrete example of Example 2.9 (3) which is not idempotent

complete.

Example 2.10. Let R be the localization of the algebra C[x, y]/(y2 − x2 − x3)

with respect to the ideal corresponding to the origin. Let C = R-mod be the abelian

category of finitely generated R-modules and X the full subcategory of projective

modules. Then by combining Example 5.5 and Proposition 5.1 in [10] (also see the

example given before in [3], Proposition 2.9), one infers that the left triangulated

category C/X is not idempotent complete.

Following [2], Lemma 1.3, Corollary 1.4, we recall some properties of left trian-

gulated categories. Let (C,Ω,∆) be a left triangulated category. A pseudokernel

of a morphism h : B → C in C is a morphism g : A → B such that h ◦ g = 0

and, if g′ : A′ → B is a morphism in C with h ◦ g′ = 0, there exists α : A′ → A

such that g′ = g ◦ α. Pseudocokernels are dually defined. For a left exact triangle

Ω(C)
f

−→ A
g

−→ B
h

−→ C in (C,Ω,∆), f is a pseudokernel of g and g is a pseudok-

ernel of h. Thus for any object X in C, HomC(X,−) : C → Ab is homological. But

in general g is not a pseudocokernel of f and h is not a pseudocokernel of g. Thus

HomC(−, X) : C → Ab is not homological.

It is well known that a monomorphism in a triangulated category is a section,

that is, it admits a left inverse. Dually, an epimorphism in a triangulated cate-
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gory is a retraction, that is, it admits a right inverse (see [13], Lemma 2.2, or [14],

Proposition 1.5.1). However, the above results usually fail in a left triangulated cat-

egory. From these properties we can see that there exist some differences between

triangulated categories and left triangulated categories.

Lemma 2.11. Let (C,Ω,∆) be a left triangulated category. Assume that

Ω(C)
f

−→ A
g

−→ B
h

−→ C and Ω(C′)
f ′

−→ A′ g′

−→ B′ h′

−→ C′ are two left triangles

in ∆, and β : B → B′, γ : C → C′ are two isomorphisms such that γ ◦ h = h′ ◦ β.

Then there exists an isomorphism α : A → A′ such that the following diagram is

commutative:

Ω(C)

Ω(γ)

��

f
// A

α

��

g
// B

β

��

h
// C

γ

��

Ω(C′)
f ′

// A′
g′

// B′
h′

// C′

P r o o f. The proof follows directly from the dual of [2], Corollary 1.5. �

Note that for a triple (C,Ω,∆) satisfying (LT1)–(LT3), Lemma 2.11 also holds.

Lemma 2.12. Let (C,Ω,∆) be a left triangulated category. A diagram

Ω(C)⊕ Ω(C′)
f⊕f ′

−→ A⊕A′ g⊕g′

−→ B ⊕B′ h⊕h′

−→ C ⊕ C′

is a left triangle if and only if both Ω(C)
f

−→ A
g

−→ B
h

−→ C and Ω(C′)
f ′

−→ A′ g′

−→

B′ h′

−→ C′ are left triangles.

P r o o f. The proof is analogous to those of [15], Corollary 1.2.5; and [4],

Lemma 1.6. �

Let (C,Ω,∆) be a left triangulated category, and C̃ the idempotent completion

of C. Define Ω̃ : C̃ → C̃ by Ω̃(A, e) = (Ω(A),Ω(e)). For convenience, we usually write

Ω̃ as Ω. Define a diagram in C̃

(⋄) Ω(C)
h

−→ A
g

−→ B
f

−→ C

to be a left triangle when it is a direct summand of a left triangle in ∆, that is,

there exists a left triangle ⋄′ of ∆ and left triangle maps s : ⋄ → ⋄′ and r : ⋄′ → ⋄

with rs = id⋄; equivalently, when there is a left triangle ⋄
′′ in C̃ such that ⋄ ⊕ ⋄′′ is

isomorphic to a left triangle in ∆. Denote by ∆̃ the class of left triangles in C̃.

483



Lemma 2.13. Let

Ω(C)

Ω(γ)

��

f
// A

g
// B

β

��

h
// C

γ

��

Ω(C)
f

// A
g

// B
h

// C

be a commutative diagram in a left triangulated category (C,Ω,∆). Assume that

β and γ are idempotent morphisms. Then there exists an idempotent morphism

α = α2 : A → A such that the diagram

(2.1) Ω(C)

Ω(γ)

��

f
// A

α

��

g
// B

β

��

h
// C

γ

��

Ω(C)
f

// A
g

// B
h

// C

commutes.

P r o o f. The proof is similar to that of [4], Lemma 1.13. �

Theorem 2.14. Let (C,Ω,∆) be a left triangulated category. Then with the

collection of left triangles in ∆̃, (C̃, Ω̃, ∆̃) is a left triangulated category.

P r o o f. To prove that (C̃, Ω̃, ∆̃) is a left triangulated category, we only need to

show that left triangles in ∆̃ satisfy four axioms of Definition 2.5.

(LT1 a) For any object A of C̃, there exists A′ in C̃ such that A⊕A′ ∈ C (in fact,

if A = (M, e), take A′ = (M, idM − e) and we have A ⊕ A′ ≃ l(M)). By Lemma

2.12, the left triangle

0 → A⊕A′ id
−→ A⊕A′ → 0

in ∆ guarantees that 0 → A
id
−→ A → 0 is a left triangle in ∆̃.

(LT1 b) Let h : B → C be a morphism in C̃, then there exist two objects B′ and

C′ in C̃ such that B ⊕B′ ∈ C and C ⊕ C′ ∈ C. Let

(∗) Ω(C ⊕ C′)
a

−→ D
b

−→ B ⊕B′ h′

−→ C ⊕ C′

be a left triangle in ∆ with h′ =
(

h 0

0 0

)
. By Lemma 2.13, there exists an idempotent

morphism d : D → D in C such that the diagram

Ω(C ⊕ C′)
(
id 0

0 0

)

��

a
// D

d

��

b
// B ⊕B′

(
id 0

0 0

)

��

h′

// C ⊕ C′

(
id 0

0 0

)

��

Ω(C ⊕ C′)
a

// D
b
// B ⊕B′ h′

// C ⊕ C′.
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commutes. By the definition of left triangles in C̃, we have a left triangle Ω(C)
da
−→

(D, d)
bd
−→ B

h
−→ C in ∆̃.

(LT2) It is immediate from the definition of left triangles.

(LT3) Given two left triangles

Ω(C)
f

−→ A
g

−→ B
h

−→ C,(Σ1)

Ω(C′)
f ′

−→ A′ g′

−→ B′ h′

−→ C′(Σ2)

in ∆̃ with morphisms β : B → B′, γ : C → C′ such that γ ◦ h = h′ ◦ β. By the

definition of left triangles in ∆̃, there exist left triangle morphisms i : Σ1 → Σ3,

p : Σ3 → Σ1, j : Σ2 → Σ4 and q : Σ4 → Σ2 such that p◦ i = idΣ1 , q ◦ j = idΣ2 , where

Σ3, Σ4 ∈ ∆. The partial map of the left triangle (β, γ) induces a partial map of left

triangles j ◦ (β, γ) ◦ p : Σ3 → Σ4. Since Σ3 and Σ4 are left triangles in ∆, by (LT3)

we get a left triangle map η : Σ3 → Σ4 in ∆, which induces a left triangle morphism

q ◦ η ◦ i : Σ1 → Σ2 extending (β, γ) in ∆̃.

(LT4) For any two left triangles

Ω(C)
f

−→ A
g

−→ B
h

−→ C(1)

Ω(D)
i

−→ E
l

−→ C
k

−→ D(2)

in ∆̃ choose X , Y and Z in C̃ such that B ⊕X , C ⊕ Y , D ⊕ Z are in C. Clearly,

(3) 0 −→ X
idX−→ X −→ 0

and

(4) Ω(Y )
Ω(idY )

// Ω(Y ) // 0 // Y

are left triangles in ∆̃. Taking the direct sum of left triangles (1), (3) and (4), we

get the following left triangle:

(5) Ω(C)⊕ Ω(Y )

(
f 0

0 0

0 id

)

// A⊕X ⊕ Ω(Y )

(
g 0 0

0 id 0

)

// B ⊕X

(
h 0

0 0

)

// C ⊕ Y.

Observe that the third morphism of (5) is in C. Thus B ⊕ X

(
h 0

0 0

)

−→ C ⊕ Y can be

extended to a left triangle (�) in C. Since Lemma 2.11 also holds for a triple (C,Ω,∆)

satisfying (LT1)–(LT3), by Lemma 2.11, (5) is isomorphic to (�) in ∆.
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Similarly, the following left triangle is isomorphic to a left triangle in ∆:

(6) Ω(D)⊕ Ω(Z)

(
i 0

0 0

0 id

)

// E ⊕ Y ⊕ Ω(Z)

(
l 0 0

0 id 0

)

// C ⊕ Y

(
k 0

0 0

)

// D ⊕ Z.

Since k ◦h : B → D is a morphism in C̃, by (LT1) k ◦h : B → D can be embedded

into a left triangle in ∆̃

(7) Ω(D)
j

−→ F
m
−→ B

k◦h
−→ D.

Similarly, we have the left triangle

(8) Ω(D)⊕ Ω(Z)

(
j 0

0 0

0 id

)

// F ⊕X ⊕ Ω(Z)

(
m 0 0

0 id 0

)

// B ⊕X

(
k◦h 0

0 0

)

// D ⊕ Z

in ∆.

Since C is a pretriangulated category, there exist two morphisms a : A ⊕ X ⊕

Ω(Y ) → F ⊕X⊕Ω(Z) and b : F ⊕X⊕Ω(Z) → E⊕Y ⊕Ω(Z) such that the diagram

below is fully commutative:

ΩE ⊕ ΩY ⊕ Ω2Z

f◦Ω(l̄)

��

Ω(C) ⊕ Ω(Y )

Ω(k)

��

f=

(
f 0

0 0

0 id

)

// A⊕X ⊕ Ω(Y )

a

��

(
g 0 0

0 id 0

)

// B ⊕X

id

��

(
h 0

0 0

)

// C ⊕ Y

k=
(
k 0

0 0

)

��

Ω(D)⊕ Ω(Z)

Ω(id)

��

(
j 0

0 0

0 id

)

// F ⊕X ⊕ Ω(Z)

b

��

(
m 0 0

0 id 0

)

// B ⊕X
(
h 0

0 0

)

��

(
k◦h 0

0 0

)

// D ⊕ Z

id

��

Ω(D)⊕ Ω(Z)

(
i 0

0 0

0 id

)

// E ⊕ Y ⊕ Ω(Z)
l̄=
(
l 0 0

0 id 0

)

// C ⊕ Y

(
k 0

0 0

)

// D ⊕ Z

where

a =




a11 a12 0

0 id 0

a31 a32 0


 and b =




b11 b12 0

0 0 0

b31 b32 id


.

The 0’s and id’s appearing in a and b come from the commutativity property of the

above diagram. Furthermore, we have

a11 ◦ f = j ◦ Ω(k), b11 ◦ j = i, g = m ◦ a11, l ◦ b11 = h ◦m.
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Define two morphisms

µ =




id −a12 0

0 id 0

b31 b32 id


 : F ⊕X ⊕ Ω(Z) → F ⊕X ⊕ Ω(Z)

and

ν =




id a12 0

0 id 0

−b31 a32 id


 : F ⊕X ⊕ Ω(Z) → F ⊕X ⊕ Ω(Z).

Due to µ ◦ ν = id, ν ◦ µ = id, µ is an automorphism of F ⊕X ⊕ Ω(Z). Considering

the compositions

µ ◦ a =




id −a12 0

0 id 0

b31 b32 id






a11 a12 0

0 id 0

a31 a32 0


 =




a11 0 0

0 id 0

0 0 0




and

b ◦ ν =




b11 b12 0

0 0 0

b31 b32 id






id a12 0

0 id 0

−b31 a32 id


 =




b11 0 0

0 0 0

0 0 id


 ,

we have the following two isomorphic left triangles in ∆:

Ω(E)⊕ Ω(Y )⊕ Ω2(Z)

id

��

ϕ
// A⊕X ⊕ Ω(Y )

id

��

µ◦a
// F ⊕X ⊕ Ω(Z)

ν

��

b◦ν
// E ⊕ Y ⊕ Ω(Z)

id

��

Ω(E)⊕ Ω(Y )⊕ Ω2(Z)
f◦Ω(l̄)

// A⊕X ⊕ Ω(Y )
a

// F ⊕X ⊕ Ω(Z)
b

// E ⊕ Y ⊕ Ω(Z)

where

ϕ =




f ◦ Ω(l) 0 0

0 0 0

0 id 0


 , µ ◦ a =




a11 0 0

0 id 0

0 0 0


 , b ◦ ν =




b11 0 0

0 0 0

0 0 id


 .
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Thus, by the definition of ∆̃, we obtain a left triangle Ω(E)
f◦Ω(l)
−→ A

a11−→ F
b11−→ E in

∆̃ such that the following diagram is fully commutative in C̃:

ΩE

f◦Ωl

��

Ω(C)

Ω(k)

��

f
// A

a11

��

g
// B

idB

��

h
// C

k

��

Ω(D)

idΩ(D)

��

j
// F

b11

��

m
// B

h

��

k◦h
// D

idD

��

Ω(D)
i

// E
l

// C
k

// D

This completes the proof. �

The following example shows the idempotent completion of C/X in Example 2.10.

Example 2.15. Let R be the algebra as described in Example 2.10 and R̂ the

completion of R. Let C′ = R̂-mod the abelian category of finitely generated R̂-

modules and X ′ the full subcategory of projective R̂-modules. Then the idempotent

completion of C/X is equivalent to C′/X ′.

Theorem 2.16. Let (C,Ω,∆) be a left triangulated category. Then its idempo-

tent completion (C̃, Ω̃, ∆̃) admits a unique structure of left triangulated category such

that the canonical functor ι : C → C̃ becomes left exact. Moreover, if C̃ is endowed

with this structure, then for each idempotent complete left triangulated category D,

the functor ι induces an equivalence

Homexact(C̃,D) −→ Homexact(C,D),

where Homexact denotes left exact functors between two left triangulated categories.

P r o o f. By (LT1)–(LT3), we see that there exists a unique left triangulation

in C̃. From the definition of left triangles in C̃, the functor l : C → C̃ is left exact.

Clearly, the remaining part of this theorem holds by Theorem 2.3. �

Note that, in this section, all notions and results for left triangulated categories

can be given dually for right triangulated categories.
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3. Idempotent completion of pretriangulated categories

In this section, we show the main result of this paper. First, we need some lemmas

for preparation.

Let A and B be two additive categories (or especially pretriangulated categories),

and (F,G) be two functors from A to B. For any object (X, e) in Ã, define F̃ ,

G̃ : Ã → B̃ by F̃ (X, e) = (F (X), F (e)) and G̃(X, e) = (G(X), G(e)), respectively.

Clearly, both F̃ and G̃ are functors from Ã to B̃. As in Section 2, we usually simply

write F̃ and G̃ as F and G, respectively.

Lemma 3.1. Let F : A → B and G : B → A be an adjoint pair of functors. Then

the extensions F̃ : Ã → B̃ and G̃ : B̃ → Ã to the idempotent completions are still

adjoint.

P r o o f. Let ε : FG → idB be the counit and δ : idA → GF the unit of the

adjoint pair (F,G). According to [8], Remark 6.7, we can define the extensions of

natural transformations ε̃ and δ̃ respectively. By uniqueness of the extensions of

functors and natural transformations to the idempotent completion, one can easily

see that the counit-unit equations εF ◦Fδ = idF and Gε ◦ δG = idG yield equations

ε̃F̃ ◦ F̃ δ̃ = id
F̃
and G̃ε̃ ◦ δ̃G̃ = id

G̃
. Hence (F̃ , G̃) is still an adjoint pair of functors

with counit ε̃ and unit δ̃. �

Lemma 3.2. Let A
f

−→ B
g

−→ C
h

−→ Σ(A) be any right triangle in ∇̃, and let

Ω(C′)
f ′

−→ A′ g′

−→ B′ h′

−→ C′ be any left triangle in ∆̃. If there are two morphisms

α : A → Ω(C′), β : B → A′ with f ′ ◦ α = β ◦ f , then there exists a morphism

γ : C → B′ that makes the following diagram commutative:

(3.1) A

α

��

f
// B

β

��

g
// C

h
// Σ(A)

ε
C′Σ(α)

��

Ω(C′)
f ′

// A′
g′

// B′
h′

// C′

P r o o f. Denote the right triangle A
f

−→ B
g

−→ C
h

−→ Σ(A) as ∇̃1 and the left

triangle Ω(C′)
f ′

−→ A′ g′

−→ B′ h′

−→ C′ as ∆̃1. By the definition of right triangles in

∇̃, there exists a right triangle

(∇1) A1
f1
−→ B1

g1
−→ C1

h1−→ Σ(A1)

in ∇ and right triangle maps s = (s1, s2, s3) : ∇̃1 → ∇1, u = (u1, u2, u3) : ∇1 → ∇̃1

such that u ◦ s = 1
∇̃1
.
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Also, by the definition of a left triangle in ∆̃, there exists a left triangle

(∆1) Ω(C′
1)

f ′

1−→ A′
1

g′

1−→ B′
1

h′

1−→ C′
1

in ∆ and left triangle maps t = (t1, t2, t3) : ∆̃1 → ∆1, v = (v1, v2, v3) : ∆1 → ∆̃1

such that v ◦ t = 1∆̃1
. Consider the following diagram with left commutative square:

A1

Ω(t3)◦α◦u1

��

f1
// B1

t1◦β◦u2

��

g1
// C1

h1
// Σ(A1)

t3◦(εC′Σ(α))◦Σ(u1)

��

Ω(C′
1)

f ′

1
// A′

1

g′

1
// B′

1

h′

1
// C′

1,

where the upper row is in ∇ and the lower row is in ∆. According to the definition

of pretriangulation, there exists a morphism γ′ : C1 → B′
1 that makes the diagram

commutative. Set γ = v2 ◦ γ
′ ◦ s3 : C → B′. Obviously, (1.2) commutes. �

Lemma 3.3. Let A
f

−→ B
g

−→ C
h

−→ Σ(A) be any right triangle in ∇̃, and let

Ω(C′)
f ′

−→ A′ g′

−→ B′ h′

−→ C′ be any left triangle in ∆̃. If there are two morphisms

α : Σ(A) → C′, β : C → B′ with α ◦ h = h′ ◦ β, then there exists a morphism

γ : B → A′ that makes the following diagram: commutative:

A

Ω(α)◦δA

��

f
// B

g
// C

β

��

h
// Σ(A)

α

��

Ω(C′)
f ′

// A′
g′

// B′
h′

// C′

.

P r o o f. The proof is analogous to that of Lemma 3.2. �

Theorem 3.4. Let (C,Σ,Ω,∇,∆, ε, δ) be a pretriangulated category. Then its

idempotent completion (C̃, Σ̃, Ω̃, ∇̃, ∆̃, ε̃, δ̃) admits a unique structure of pretrian-

gulated category such that the canonical functor ι : C → C̃ becomes exact. If C̃

is endowed with this structure, then for each idempotent complete pretriangulated

category D, the functor ι induces an equivalence

Homexact(C̃,D) −→ Homexact(C,D),

where Homexact denotes exact functors between two pretriangulated categories.

P r o o f. Clearly, this theorem follows from Definition 2.8, Theorem 2.16 and all

lemmas in this section. �

Since a triangulated category is a special pretriangulated category, by Theorem 3.4

we have the following corollary.
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Corollary 3.5 ([4]). Let C be a triangulated category. Then its idempotent com-

pletion C̃ admits a unique structure of triangulated category such that the canonical

functor ι : C → C̃ becomes exact. If C̃ is endowed with this structure, then for each

idempotent complete triangulated category D, the functor ι induces an equivalence

Homexact(C̃,D) −→ Homexact(C,D),

where Homexact denotes exact functors between two triangulated categories.

P r o o f. By Theorem 3.4, we get that C̃ is a pretriangulated category. Assume

that T is the translation functor in C, then T is an autoequivalence functor in C,

which implies that T̃ is also an autoequivalence in C̃. Recall that for a right trian-

gulated category D with a suspension functor T1, if T1 is an equivalence, then D is

a triangulated category (see [2]). Thus C̃ is a triangulated category. �

4. Extension of torsion pairs

In this section, we show that a torsion pair in a pretriangulated category is com-

patible with taking idempotent completion.

Let (C,Σ,Ω,∇,∆, ε, δ) be a pretriangulated category, and X , Y two full addi-

tive subcategories of C. Following [7], we recall the definition of a torsion pair in

a pretriangulated category.

Definition 4.1 ([7]). The pair (X ,Y) is called a torsion pair in C if

(1) C(X ,Y) = 0.

(2) Σ(X ) ⊆ X and Ω(Y) ⊆ Y.

(3) [The glueing condition]: ∀C ∈ C, there are triangles

∆(C) : Ω(Y C)
gC
−→ XC

fC
−→ C

gC

−→ Y C ∈ ∆

∇(C) : XC
fC
−→ C

gC

−→ Y C fC

−→ Σ(XC) ∈ ∇

with XC ∈ X , Y C ∈ Y.

We begin with the construction of truncation functors τX , τY corresponding to

a given torsion pair (X ,Y) in C.
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Lemma 4.2. Let (X ,Y) be a torsion pair in a pretriangulated category (C, Σ, Ω,

∇, ∆, ε, δ). Then there exist functors τX : C → X and τY : C → Y such that for any

X ∈ C there exist a left triangle and a right triangle of the forms

Ω(τYC)
gC
−→ τXC

fC
−→ C

gC

−→ τYC ∈ ∆

and

τXC
fC
−→ C

gC

−→ τYC
fC

−→ Σ(τXC) ∈ ∇.

P r o o f. First, we show the existence of τX and τY . For each object X in

C, choose a left triangle Ω(Y C)
gC
−→ XC

fC
−→ C

gC

−→ Y C with XC ∈ X , Y C ∈

Y, and define τX (C) = XC and τY(C) = Y C . Let f : C → D be a morphism

in C, and Ω(Y D)
gD
−→ XD

fD
−→ D

gD

−→ Y D a left triangle corresponding to the

object D. Applying the cohomological functor Hom(τX (C),−) to the above left

triangle Ω(Y D)
gD
−→ XD

fD
−→ D

gD

−→ Y D, we obtain the exact sequence

Hom(τX (C),Ω(Y D)) → Hom(τX (C), XD) → Hom(τX (C), D) → Hom(τX (C), Y D).

By Definition 4.1, we see that the left and right groups in this sequence vanish. Thus

τXC
fC
−→ C

f
−→ D yields a unique morphism τX (f) : τX (C) → τX (D) = XD and the

family of these morphisms for all f ’s complete τX to a functor. Similarly, one can

establish the functoriality of τY . �

Theorem 4.3. Assume that (C,Σ,Ω,∇,∆, ε, δ) is a pretriangulated category.

Then a torsion pair (X ,Y) in C induces a torsion pair (X̃ , Ỹ) in C̃, where

X̃ = {(C, e) ; C ∈ X , e ∈ HomC(C,C) is an idempotent morphism},

and

Ỹ = {(D, f) ; D ∈ Y, f ∈ HomC(D,D) is an idempotent morphism}.

P r o o f. We should verify the three conditions in the definition of torsion pairs.

(1) For any two objects (C, e) in X̃ and (D, f) in Ỹ, we have C ∈ X and D ∈ Y.

Noting that Hom
C̃
((C, e), (D, f)) ⊂ HomC(C,D) and (X ,Y) is a torsion pair, we get

that Hom
C̃
((C, e), (D, f)) = 0.

(2) For each object (C, e) in X̃ , we have C ∈ X . Due to Σ(X ) ⊆ X , it follows

that Σ(C) ∈ X . Thus Σ̃(C, e) = (Σ(C),Σ(e)) ∈ X̃ . This means that Σ(X̃ ) ⊆ X̃ .

Similarly, we have Ω(Ỹ) ⊆ Ỹ .
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(3) For each object (C, e) in C̃, there exists a left triangle Ω(τY C)
gC
−→ τXC

fC
−→

C
gC

−→ τY C in C. Set C1 = (C, e), C2 = (C, idC − e). There is an isomorphism

(C, idC) ≃ (C, e)⊕ (C, idC − e) in C̃ and we have the commutative diagram

Ω(τY (C))

��

gC
// τX(C)

��

fC
// C

��

gC

// τY (C)

��

Ω̃(τ̃Y (C1))⊕ Ω̃(τ̃Y (C2))(
g̃C1 0

0 g̃C2

)
// τ̃X(C1)⊕ τ̃X(C2)

(
f̃C1 0

0 f̃C2

)
// C1 ⊕ C2

(
g̃C1 0

0 g̃C2

)
// τ̃Y (C1)⊕ τ̃Y (C2).

This implies that

Ω̃(τ̃Y C1)
g̃C1−→ τ̃X(C1)

f̃C1−→ C1
g̃C1

−→ τ̃Y (C1)

is a left triangle in C̃, where τ̃X(C1) = (τX(C), τX(e)) ∈ X̃ and τ̃Y (C1) =

(τY (C), τY (e)) ∈ Ỹ.

Similarly, we can obtain a right triangle τ̃X(C1)
f̃C1−→ C1

g̃C1

−→ τ̃Y (C1)
f̃C1

−→ Σ̃(τ̃XC1)

in C̃, where τ̃X(C1) = (τX(C), τX(e)) ∈ X̃ , τ̃Y (C1) = (τY (C), τY (e)) ∈ Ỹ .

This completes the proof. �
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[14] D.Miličić: Lecture on Derived Categories. www.math.utah.edu/~milicic/Eprints/

dercat.pdf.
[15] J.-L.Verdier: Des catégories dérivées des catégories abéliennes. Astérisque 239, Société

Mathématique de France, Paris, 1996. (In French.)

Authors’ addresses: J i c h u n L i u, Department of Mathematics and Physics, Fujian
Jiangxia University, No. 2, Xiyuangong Road, Fuzhou, Fujian Province 350 108, China,
e-mail: liujc1982@126.com; L o n g g a n g S u n, School of Mathematical Sciences, Univer-
sity of Science and Technology of China, No 96, Jinzhai Road, Hefei, Anhui Province 230 026,
China, e-mail: sunlg@ustc.edu.cn.

494


		webmaster@dml.cz
	2020-07-03T21:07:15+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




