Previous |  Up |  Next

Article

Keywords:
Pettis integral; McShane integral; weak McShane integral; uniform integrability
Summary:
We present a weaker version of the Fremlin generalized McShane integral (1995) for functions defined on a $\sigma $-finite outer regular quasi Radon measure space $(S,\Sigma ,\mathcal {T},\mu )$ into a Banach space $X$ and study its relation with the Pettis integral. In accordance with this new method of integration, the resulting integral can be expressed as a limit of McShane sums with respect to the weak topology. It is shown that a function $f$ from $S$ into $X$ is weakly McShane integrable on each measurable subset of $S$ if and only if it is Pettis and weakly McShane integrable on $S$. On the other hand, we prove that if an $X$-valued function is weakly McShane integrable on $S$, then it is Pettis integrable on each member of an increasing sequence $(S_\ell )_{\ell \geq 1}$ of measurable sets of finite measure with union $S$. For weakly sequentially complete spaces or for spaces that do not contain a copy of $c_0$, a weakly McShane integrable function on $S$ is always Pettis integrable. A class of functions that are weakly McShane integrable on $S$ but not Pettis integrable is included.
References:
[1] Aizpuru, A., Pérez-Fernández, F. J.: Characterizations of series in Banach spaces. Acta Math. Univ. Comen., New Ser. 68 (1999), 337-344. MR 1757800 | Zbl 0952.46009
[2] Castaing, C.: Weak compactness and convergence in Bochner and Pettis integration. Vietnam J. Math. 24 (1996), 241-286. MR 2010821
[3] Deville, R., Rodríguez, J.: Integration in Hilbert generated Banach spaces. Isr. J. Math. 177 (2010), 285-306. DOI 10.1007/s11856-010-0047-4 | MR 2684422
[4] Diestel, J., Jr., J. J. Uhl: Vector Measures. Mathematical Surveys 15 AMS, Providence, R.I. (1977). MR 0453964 | Zbl 0369.46039
[5] Piazza, L. Di, Preiss, D.: When do McShane and Pettis integrals coincide? Ill. J. Math. 47 (2003), 1177-1187. DOI 10.1215/ijm/1258138098 | MR 2036997
[6] Fabian, M., Godefroy, G., Hájek, P., Zizler, V.: Hilbert-generated spaces. J. Funct. Anal. 200 (2003), 301-323. DOI 10.1016/S0022-1236(03)00044-2 | MR 1979014 | Zbl 1039.46015
[7] Fremlin, D. H.: The generalized McShane integral. Ill. J. Math. 39 (1995), 39-67. DOI 10.1215/ijm/1255986628 | MR 1299648 | Zbl 0810.28006
[8] Fremlin, D. H.: Measure Theory. Vol. 2. Broad Foundations Corrected second printing of the 2001 original Torres Fremlin, Colchester (2003). MR 2462280
[9] Fremlin, D. H.: Measure theory. Vol. 4. Topological Measure Spaces Part I, II. Corrected second printing of the 2003 original Torres Fremlin, Colchester (2006). MR 2462372 | Zbl 1166.28001
[10] Fremlin, D. H., Mendoza, J.: On the integration of vector-valued functions. Ill. J. Math. 38 (1994), 127-147. DOI 10.1215/ijm/1255986891 | MR 1245838 | Zbl 0790.28004
[11] Geitz, R. F.: Pettis integration. Proc. Am. Math. Soc. 82 (1981), 81-86. DOI 10.1090/S0002-9939-1981-0603606-8 | MR 0603606 | Zbl 0506.28007
[12] Gordon, R. A.: The McShane integral of Banach-valued functions. Ill. J. Math. 34 (1990), 557-567. DOI 10.1215/ijm/1255988170 | MR 1053562 | Zbl 0685.28003
[13] Musiał\kern.5pt, K.: Vitali and Lebesgue convergence theorems for Pettis integral in locally convex spaces. Atti Semin. Math. Fis. Univ. Modena 35 (1987), 159-165. MR 0922998
[14] Rodríguez, J.: On the equivalence of McShane and Pettis integrability in non-separable Banach spaces. J. Math. Anal. Appl. 341 (2008), 80-90. DOI 10.1016/j.jmaa.2007.10.017 | MR 2394066 | Zbl 1138.28003
[15] Saadoune, M., Sayyad, R.: From scalar McShane integrability to Pettis integrability. Real Anal. Exchange 38 (2012-2013), 445-466. MR 3261889
[16] Schwabik, Š., Ye, G.: Topics in Banach Space Integration. Series in Real Analysis 10 World Scientific, Hackensack (2005). MR 2167754 | Zbl 1088.28008
[17] Ye, G., Schwabik, Š.: The McShane and the weak McShane integrals of Banach space-valued functions defined on $\Bbb R^m$. Math. Notes, Miskolc 2 (2001), 127-136. DOI 10.18514/MMN.2001.43 | MR 1885920 | Zbl 0993.28005
Partner of
EuDML logo