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THE WEAK MCSHANE INTEGRAL

Mohammed Saadoune, Redouane Sayyad, Agadir
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Abstract. We present a weaker version of the Fremlin generalized McShane integral (1995)
for functions defined on a σ-finite outer regular quasi Radon measure space (S,Σ, T , µ) into
a Banach space X and study its relation with the Pettis integral. In accordance with this
new method of integration, the resulting integral can be expressed as a limit of McShane
sums with respect to the weak topology. It is shown that a function f from S into X

is weakly McShane integrable on each measurable subset of S if and only if it is Pettis
and weakly McShane integrable on S. On the other hand, we prove that if an X-valued
function is weakly McShane integrable on S, then it is Pettis integrable on each member
of an increasing sequence (Sl)l>1 of measurable sets of finite measure with union S. For
weakly sequentially complete spaces or for spaces that do not contain a copy of c0, a weakly
McShane integrable function on S is always Pettis integrable. A class of functions that are
weakly McShane integrable on S but not Pettis integrable is included.

Keywords: Pettis integral; McShane integral; weak McShane integral; uniform integra-
bility
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1. Introduction

In [7], Fremlin generalized the classical McShane integral to the case of an arbi-

trary σ-finite outer regular quasi Radon measure space (S,Σ, T , µ). It turns out that

for any McShane integrable function taking values in a Banach space (X, ‖·‖), the

McShane integral on S can be approximated with respect to the norm ‖·‖ by a se-

quence consisting of McShane sums. In this paper, we will consider a weaker method

of integrability, namely weak McShane integrability. Roughly speaking, a function

f from S into X is weakly McShane integrable on S if all sequences consisting of

McShane sums of f corresponding to some class of generalized McShane partitions

of S converge to the same limit with respect to the weak topology. Unlike the

McShane integral, the resulting integral does not include automatically the Pettis
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integral, in general: a function which is weakly McShane integrable on S may fail to

be Pettis integrable (Theorem 4.6 and Corollary 4.3), therefore not weak McShane

integrable on a measurable subset of S (Corollary 3.1). By contrast with the scalar

McShane integrability introduced in [12] and [17] (only for functions defined on com-

pact intervals in R
m into a Banach space X , see also [15]), the generalized McShane

partitions considered here does not depend on the choice of the vectors x∗ ∈ X∗.

As a starting point of this study, we need to extend some basic properties of the

McShane integral developed by Fremlin in [7] into the context of weak McShane

integrals. It is also shown that a function is weakly McShane integrable on Σ (i.e.

weakly McShane integrable on each member of Σ) if and only if it is weakly McShane

integrable on S and Pettis integrable. We then proceed to describe the relationship

between the weak McShane integral (on S) and the Pettis integral. The Vitali con-

vergence theorem for the Pettis integral of Musial (Theorem 1, [13], see also [11])

will play a central role in our investigation. With help of this theorem, it is shown

that the concept of weak McShane integrability on S does not stray too far from

the weak McShane integrability on Σ: if a function is weakly McShane integrable

on S, then there exists a sequence (Sl)l>1 in Σ of finite measure with union S such

that 1Sl
f is Pettis integrable and weakly McShane integrable on Σ for each l > 1

(Theorem 4.1). Consequently, for functions f : S → X satisfying the condition that

{〈x∗, f〉 : x∗ ∈ BX∗} is uniformly integrable, the weak McShane integrability pass

from S to Σ (Theorem 4.1 and Corollary 4.1). We also study the special case of

functions taking values in weakly sequentially complete Banach spaces (for instance

L1
R
(Ω,F , ν), where (Ω,F , ν) is a σ-finite measure space) or in Banach spaces that do

not contain a copy of c0. It will be shown that for such Banach spaces it is possible

to pass from weak McShane integrability on S to Pettis integrability; equivalently,

a function is weakly McShane integrable on S if and only if it is weakly McShane

integrable on Σ (Theorems 4.3 and 4.4).

The paper is organized as follows. Section 2 contains preliminaries and known

facts on the Pettis integral. In Section 3 the notion of weak McShane integrability for

functions defined on a σ-finite outer regular quasi Radon measure space (S,Σ, T , µ)

into a Banach space is presented and discussed. Further, some basic properties of the

(strong) McShane integral are extended into the context of weak McShane integrals.

It is also shown that a function is weakly McShane integrable on Σ if and only if it

is weakly McShane integrable on S and Pettis integrable. Section 4 deals with the

relationship between the weak McShane and the Pettis integrals. The crucial fact

(Theorem 4.1) is that if a function is weakly McShane integrable on S, then it is

Pettis integrable on each member of an increasing sequence (Sl)l>1 of measurable

sets of finite measure with union S. The special case of weakly sequentially complete

Banach spaces as well as the case of Banach spaces that do not contain a copy of
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c0 are discussed (Theorems 4.3 and 4.4). A class of functions which are weakly

McShane integrable on S but not Pettis integrable is presented (Theorem 4.6 and

Corollary 4.3).

2. Preliminaries and known facts on the Pettis integral

In the sequel, X stands for a Banach space, whose norm is denoted by ‖·‖, and X∗

for the topological dual of X . The closed unit ball of X∗ is denoted by BX∗ . By w

we denote the weak topology of X . Let (S,Σ, µ) be a positive measure space. By Σf

we denote the collection of all measurable sets of finite measure. By L1
R
(µ) we denote

the Banach space of all (equivalence classes of) Σ-measurable and µ-integrable real-

valued functions on Ω, equipped with the classical norm ‖f‖1 :=
∫

S
|f | dµ. A function

f : S → X is said to be scalarly integrable if for every x∗ ∈ X∗, the real-valued

function 〈x∗, f〉 is a member of L1
R
(µ). We say also that f is Dunford integrable. If

f : S → X is a scalarly integrable function, then for each E ∈ Σ there is x∗∗
E ∈ X∗∗

such that

〈x∗, x∗∗
E 〉 =

∫

E

〈x∗, f〉dµ.

The vector x∗∗
E is called the Dunford integral of f over E. In the case that x∗∗

E ∈ X

for all E ∈ Σ, then f is called Pettis integrable and we write (Pe)
∫

E
f dµ instead

of x∗∗
E to denote the Pettis integral of f over E. If f : S → X is a Pettis integrable

function, then the set {〈x∗, f〉 : x∗ ∈ BX∗} is relatively weakly compact in L1
R
(µ)

(see [13], page 162).

Definition 2.1 (Definition 246A, [8]). A subset H of L1
R
(µ) is uniformly inte-

grable if for every ε > 0 we can find a set E ∈ Σf and an M > 0 such that

∫

S

(|h| −M1E)
+ dµ 6 ε for every h ∈ H,

where (|h| −M1E)
+ := max(|h| −M1E , 0).

⊲ Every uniformly integrable subset H of L1
R
(µ) is L1

R
(µ)-bounded. Indeed, taking

ε = 1, there must be E ∈ Σf , M > 0 such that
∫

S
(|h| −M1E)

+ dµ 6 1 for every

h ∈ H . Hence

∫

S

|h| dµ 6

∫

S

(|h| −M1E)
+ dµ+

∫

S

M1E dµ 6 1 +Mµ(E)

for every h ∈ H , so H is L1
R
(µ)-bounded.

⊲ Let ϕ ∈ L1
R+(µ). Then {h ∈ L1

R
(µ) : |h| 6 ϕ} is uniformly integrable.
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Theorem 2.1 ([8], Theorem 246G). A subset H of L1
R
(µ) is uniformly integrable

if and only if

(1) |
∫

A
h dµ| < ∞ for every µ-atom (in the measure space sense (see [8], 211I))

A ∈ Σ and

(2) for every ε > 0 there are E ∈ Σf and an η > 0 such that |
∫

F
h dµ| 6 ε for every

h ∈ H and for every F ∈ Σ with µ(F ∩ E) 6 η.

Remark 2.1. Condition (2) is equivalent to

(2′) lim
n→∞

sup
h∈H

|
∫

Fn
h dµ| = 0 for every non-increasing sequence (Fn)n>1 in Σ with

empty intersection.

Indeed, the proof of implication (2) ⇒ (2′) is easy while the implication (2′) ⇒

(2) follows from the proof of Theorem 246G in [8].

Note ([8], Corollary 246I) that in case (S,Σ, µ) is a probability space, (1) and (2)

may be replaced by

lim
λ→∞

sup
h∈H

∫

{t∈S : |h(t)|>λ}

|h| dµ = 0.

Theorem 2.2 ([8], Theorem 247C). A subset H of L1
R
(µ) is uniformly integrable

if and only if it is relatively weakly compact in L1
R
(µ).

The following well known result ([11], [13]), which is the Pettis analogue of the

classical Vitali convergence theorem, will play a key role in this work. An alternative

proof based on the Eberlein-Smulyan-Grothendieck theorem can be found in [2].

Theorem 2.3. Let f : S → X be a scalarly integrable function satisfying the

following two conditions:

(1) {〈x∗, f〉 : x∗ ∈ BX∗} is relatively weakly compact in L1
R
(µ).

(2) There exists a sequence (fn) of Pettis integrable functions from S into X such

that

lim
n→∞

∫

E

〈x∗, fn〉dµ =

∫

E

〈x∗, f〉dµ

for each x∗ ∈ X∗ and each E ∈ Σ.

Then f is Pettis integrable.
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3. The weak McShane integral

In this section, we introduce the concept of the weak McShane integral and investi-

gate some of its properties. For this purpose, we need to introduce some terminology.

Assume that (S,Σ, µ) is a σ-finite positive measure space and T ⊂ Σ a topology on

S making (S, T ,Σ, µ) a quasi-Radon measure space which is outer regular, that is,

such that

µ(E) = inf{µ(G) : E ⊂ G, G ∈ T } (E ∈ Σ).

For an extensive study of quasi-Radon measure spaces, the reader is referred to [9],

Chapter 41. A partial McShane partition is a countable (maybe finite) collection

{(Ei, ti)}i∈I , where the Ei’s are pairwise disjoint measurable subsets of S with finite

measure and ti is a point of S for each i ∈ I. A generalized McShane partition of

S is an infinite partial McShane partition {(Ei, ti)}i>1 such that µ
(

S \
∞
⋃

i=1

Ei

)

= 0.

A gauge on S is a function ∆: S → T such that t ∈ ∆(t) for every t ∈ S. For a given

∆ on S, we say that a partial McShane partition {(Ei, ti)}i∈I is subordinate to ∆ if

Ei ⊂ ∆(ti) for every i ∈ I. Let f : S → X be a function. We set

σn(f,P∞) :=
n
∑

i=1

µ(Ei)f(ti)

for each infinite partial McShane partition P∞ = {(Ei, ti)}i>1.

From now on (S, T ,Σ, µ) is a σ-finite outer regular quasi-Radon measure space.

Definition 3.1 ([7]). A function f : S → X isMcShane integrable (M-integrable

for short), with integral ̟, if for every ε > 0 there is a gauge ∆: S → T such that

lim sup
n→∞

‖σn(f,P∞)−̟‖ 6 ε

for every generalized McShane partition P∞ of S subordinate to ∆. We set ̟ :=

(M)
∫

S
f dµ.

Recall that for a compact Radon measure space (S, T ,Σ, µ), generalized McShane

partitions can be replaced by finite strict generalized McShane partitions of S (that

is, finite partial McShane partitions {(Ei, ti)}16i6p such that
p
⋃

i=1

Ei = S) (see [7]).

Remark 3.1. For the sake of comparison with the weak McShane integral, it is

interesting to observe the following sequential formulation of the preceding definition.

A function f : S → X is M-integrable, with integral ̟, if and only if there is

a sequence of gauges (∆m) from S into T such that

lim
m→∞

sup
P∞∈Π∞(∆m)

lim sup
n→∞

‖σn(f,P∞)−̟‖ = 0,
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where Π∞(∆m) denotes the collection of all generalized McShane partitions of S

subordinate to ∆m.

Every McShane integrable function is Pettis integrable and the respective inte-

grals coincide whenever defined ([7], Theorem 1Q) but the converse does not hold

in general (see [3], [10], and [14]). Nevertheless, for some classes of Banach spaces

these two notions coincide: this happens for separable spaces ([7], [10], [12]), super-

reflexive spaces, c0(I) (for any nonempty set I) [5] and L1
R
(ν) (for any probability

measure ν) [14]. More recently, R. Deville and J. Rodríguez [3] have proved the coin-

cidence of the McShane and Pettis integrals for functions taking values in a subspace

of a Hilbert generated Banach space, thus generalizing all previously mentioned re-

sults on such coincidence. Recall that a Banach space is Hilbert generated if there

exists a Hilbert space Y and an operator T : Y → X such that its range T (Y ) is

dense in X . For an extensive study of this class of spaces, see [6] and the references

therein.

Before proceeding further, we list below some basic properties of the McShane

integral that will be needed in this work. They are borrowed from [7].

Theorem 3.1. Let f : S → X be a function.

(1) If f is M-integrable, then the restriction f|A is M-integrable (with respect to

the σ-finite outer regular quasi-Radon measure space (A,A∩T , A∩Σ, µ|A)) for

every A ⊂ S.

(2) Let E ∈ Σ. Then f is M-integrable on E if and only if f|E is M-integrable,

and in this case the integrals are equal.

(3) Suppose X = R. Then f is M-integrable, if and only if it is integrable in the

ordinary sense, and the two integrals are equal.

We now introduce the concept of the weak McShane integral. For this purpose, we

need an extra definition. A sequence (Pm
∞) of generalized McShane partitions of S is

said to be adapted to a sequence of gauges (∆m) from S into T if Pm
∞ is subordinate

to ∆m for each m > 1.

Definition 3.2. A function f : S → X is said to be weakly McShane integrable

(WM-integrable for short) on S, with weak McShane integral ̟, if there is a se-

quence of gauges (∆m) from S into T such that the following condition (†) holds:

(†) lim
m→∞

lim sup
n→∞

|〈x∗, σn(f,P
m
∞)〉 − 〈x∗, ̟〉| = 0,

for every x∗ ∈ X∗ and for every sequence (Pm
∞) of generalized McShane partitions of

S adapted to (∆m).

We set ̟ = (WM)
∫

S
f dµ.
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⊲ f is WM-integrable on a measurable subset E of S, if the function 1Ef is

WM-integrable on S. We set (WM)
∫

E
f dµ := (WM)

∫

S
1Ef dµ.

⊲ f is WM-integrable on Σ, if it is WM-integrable on every measurable subset

of S.

Evidently, if f is WM-integrable on Σ, then it is WM-integrable on S. This

implication cannot be reversed, see Section 4 to come.

Proposition 3.1. If f : S → X isM-integrable, then it isWM-integrable on Σ.

P r o o f. It is an immediate consequence of Theorem 3.1 (1)–(2), Remark 3.1

and Definition 3.2. �

The next theorem provides the linearity properties of the weak McShane integral.

Theorem 3.2. Let f , g : S → X be two functions.

(i) If f and g are WM-integrable on S, then f + g is WM-integrable on S and

(WM)

∫

S

f + g dµ = (WM)

∫

S

f dµ+ (WM)

∫

S

g dµ.

(ii) If f isWM-integrable on S and if α is a real number, then αf isWM-integrable

on S and

(WM)

∫

S

αf dµ = α(WM)

∫

S

f dµ.

(iii) If f is WM-integrable on S and if f = g µ-a.e., then the function g is WM-

integrable on S and

(WM)

∫

S

g dµ = (WM)

∫

S

f dµ.

P r o o f. We will prove (iii) only; the rest of the proof is straightforward. Set

θ := f − g. Since θ := 0 µ-a.e., by ([7], Corollary 2G), θ is M-integrable, therefore

WM-integrable on Σ. In turn, by (i), g = f + θ is WM-integrable on S. �

The following equivalent formulation of the weak McShane integral helps to trans-

late Theorem 3.1 into the context of weak McShane integrals.
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Proposition 3.2. A function f : S → X is WM-integrable on S with weak

McShane integral ̟ if and only if there is a sequence (∆m) of gauges from S into T

such that

(†′) lim
m→∞

sup
P∞∈Π∞(∆m)

lim sup
n→∞

|〈x∗, σn(f,P∞)〉 − 〈x∗, ̟〉| = 0 for all x∗ ∈ X∗.

P r o o f. Of course (†′) implies (†). To see that (†) implies (†′), set

Mm := sup
P∞∈Π∞(∆m)

lim sup
n→∞

|〈x∗, σn(f,P∞)〉 − 〈x∗, ̟〉|

and suppose that

α := lim sup
m→∞

Mm > 0.

For each m > 1, choose Pm
∞ ∈ Π∞(∆m) such that

lim sup
n→∞

|〈x∗, σn(f,P
m
∞)〉 − 〈x∗, ̟〉| > Mm −

α

2
if Mm < ∞,

>
α

2
if Mm = ∞.

Taking the lim sup on m we get 0 > α
2 ! a contradiction. �

As a first consequence of this proposition, we obtain a version of Proposition 1E

in [7] for the weak McShane integral dealing with compact Radon measure spaces.

Proposition 3.3. Suppose that (S, T ,Σ, µ) is a compact Radon measure space

and let f : S → X be a function. Then f is WM-integrable on S, with weak

McShane integral ̟, if and only if there is a sequence (∆m) of gauges from S into

T such that

(†“) lim
m→∞

sup
{(Ei,ti)}16i6p∈Πf (∆m)

∣

∣

∣

∣

〈

x∗,

p
∑

i=1

µ(Ei)f(ti)

〉

− 〈x∗, ̟〉

∣

∣

∣

∣

= 0

for all x∗ ∈ X∗,

where Πf (∆m) denotes the collection of all finite strict generalized McShane parti-

tions of S subordinate to ∆m.

P r o o f. The “only if” part follows easily from Proposition 3.2 applied to each

function 〈x∗, f〉 (note that a finite partial McShane partition can be extended to an

infinite one by adding empty sets). To prove the “if” part let x∗ ∈ X∗, ε > 0 and

choose a positive integer N (which may depend on x∗) such that

sup
{(Ei,ti)}16i6p∈Πf (∆m)

∣

∣

∣

∣

〈

x∗,

p
∑

i=1

µ(Ei)f(ti)

〉

− 〈x∗, ̟〉

∣

∣

∣

∣

6 ε
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for every m > N . According to Proposition 1E in [7] and its proof, we get

sup
{(Ei,ti)}16i6p∈Πf (∆m)

lim sup
n→∞

|〈x∗, σn(f,P∞)〉 − 〈x∗, ̟〉| 6 ε

for every m > N . Thus

lim
m→∞

sup
P∞∈Π∞(∆m)

lim sup
n→∞

|〈x∗, σn(f,P∞)〉 − 〈x∗, ̟〉| = 0.

Since this holds for all x∗ ∈ X∗, we conclude that f is WM-integrable on S. �

Remark 3.2. By repeating mutatis mutandis the arguments of the proof of

Proposition 3.2, we see that (†′′) is equivalent to

lim
m→∞

〈

x∗,

p
∑

i=1

µ(Em
i )f(tmi )

〉

= 〈x∗, ̟〉 for all x∗ ∈ X∗

for every sequence ({(Em
i , tmi )}16i6p)m>1 of finite strict generalized McShane parti-

tions of S adapted to (∆m).

Corollary 3.1. Let E ∈ Σ and let f : S → X be a function. If f is WM-

integrable on an E, then it is scalarly integrable on E (that is, 〈x∗, f〉 is Lebesgue

integrable on E for all x∗ ∈ X∗), and we have

∫

E

〈x∗, f〉dµ =

〈

x∗, (WM)

∫

E

f dµ

〉

for all x∗ ∈ X∗.

Consequently, if f is WM-integrable on Σ, then it is Pettis integrable and

(Pe)

∫

E

f dµ = (WM)

∫

E

f dµ for all E ∈ Σ.

P r o o f. Suppose that f is WM-integrable on E and let x∗ ∈ X∗. By virtue

of Proposition 3.2 and Remark 3.1, we can easily see that 〈x∗, 1Ef〉 is M-integrable

as a function from S into R, with integral 〈x∗, (WM)
∫

E
f dµ〉. Therefore 〈x∗, f〉 is

Lebesgue integrable on E and

∫

E

〈x∗, f〉dµ =

∫

S

〈x∗, 1Ef〉dµ =

〈

x∗, (WM)

∫

E

f dµ

〉

for all x∗ ∈ X∗

in view of Theorem 3.1 (3). �
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Lemma 3.1. Let f : S → X be a function. If f is WM-integrable on S, then

there is a sequence (∆m) of gauges from S into T such that

lim
m→∞

sup
P∞∈Π∞|E(∆m)

lim sup
n→∞

∣

∣

∣

∣

〈x∗, σn(f,P∞)〉 −

∫

E

〈x∗, f〉dµ

∣

∣

∣

∣

= 0

for all E ∈ Σ and for all x∗ ∈ X∗, where Π∞|E(∆m) denotes the collection of

all generalized McShane partitions of E (with respect to the σ-finite outer regular

quasi-Radon measure space (E,E ∩ Σ, E ∩ T , µ|E)) subordinate to ∆m.

P r o o f. By Proposition 3.2, there is a sequence (∆m) of gauges from S into T

such that

lim
m→∞

sup
P∞∈Π∞(∆m)

lim sup
n→∞

∣

∣

∣

∣

〈x∗, σn(f,P∞)〉 −

〈

x∗, (WM)

∫

S

f dµ

〉∣

∣

∣

∣

= 0

for all x∗ ∈ X∗.

Let x∗ ∈ X∗ and ε > 0. Then there exists a positive integer N (possibly depending

on x∗) such that

sup
P∞∈Π∞(∆m)

lim sup
n→∞

∣

∣

∣

∣

〈

x∗, σn(f,P∞)〉 −

〈

x∗, (WM)

∫

S

f dµ

〉∣

∣

∣

∣

6
ε

2

for every m > N . Let E ∈ Σ. We can then repeat mutatis mutandis the arguments

used in the proof of ([7], Theorem 1N) for the function 〈x∗, f〉 to obtain

(3.2.1) sup
P∞,Q∞∈Π∞|E(∆m)

lim sup
n→∞

|〈x∗, σn(f,P∞)〉 − 〈x∗, σn(f,Q∞)〉| 6
ε

2

for every m > N . On the other hand, as 〈x∗, f〉|E is M-integrable (by Corollary 3.1

and Theorem 3.1 (1)–(3)) we may select for each m > 1 a gauge Λm : S → T (which

may depend on x∗) with Λm(t) ⊂ ∆m(t) for all t ∈ S such that

(3.2.2) sup
P∞∈Π∞|E(Λm)

lim sup
n→∞

∣

∣

∣

∣

〈x∗, σn(f,P∞)〉 −

∫

E

〈x∗, f〉dµ

∣

∣

∣

∣

6
ε

2
.
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Now, by the triangle inequality and the fact that Λm(t) ⊂ ∆m(t) for all t ∈ S, we

have

sup
P∞∈Π∞|E(∆m)

lim sup
n→∞

∣

∣

∣

∣

〈x∗, σn(f,P∞)〉 −

∫

E

〈x∗, f〉dµ

∣

∣

∣

∣

6 sup
P∞∈Π∞|E(∆m),Q∞∈Π∞|E(Λm)

lim sup
n→∞

|〈x∗, σn(f,P∞)〉 − 〈x∗, σn(f,Q∞)〉|

+ sup
Q∞∈Π∞|E(Λm)

lim sup
n→∞

∣

∣

∣

∣

〈x∗, σn(f,Q∞)〉 −

∫

E

〈x∗, f〉dµ

∣

∣

∣

∣

6 sup
P∞,Q∞∈Π∞|E(∆m)

lim sup
n→∞

|〈x∗, σn(f,P∞)〉 − 〈x∗, σn(f,Q∞)〉|

+ sup
Q∞∈Π∞|E(Λm)

lim sup
n→∞

∣

∣

∣

∣

〈x∗, σn(f,Q∞)〉 −

∫

E

〈x∗, f〉dµ

∣

∣

∣

∣

for every m > N . Hence, by (3.2.1) and (3.2.2)

sup
P∞∈Π∞|E(∆m)

lim sup
n→∞

∣

∣

∣

∣

〈x∗, σn(f,P∞)〉 −

∫

E

〈x∗, f〉dµ

∣

∣

∣

∣

6 ε

for every m > N . Thus

lim
m→∞

sup
P∞∈Π∞|E(∆m)

lim sup
n→∞

∣

∣

∣

∣

〈x∗, σn(f,P∞)〉 −

∫

E

〈x∗, f〉dµ

∣

∣

∣

∣

= 0.

�

As a consequence of Lemma 3.1, we have

Corollary 3.2. Let f : S → X be a function and let F ∈ Σ. If f is WM-

integrable on S and Pettis integrable on F (that is, 1F f is Pettis integrable), then

f|E∩F is WM-integrable on E ∩ F for every E ∈ Σ, and we have

(WM)

∫

E∩F

f|E∩F dµ = (Pe)

∫

E

1F f dµ.

Lemma 3.2 (The weak Saks-Henstock lemma). Let f : S → X be a scalarly

integrable function. Suppose that (∆m) is a sequence of gauges from S into T such

that

lim
m→∞

sup
P∞∈Π∞(∆m)

lim sup
n→∞

∣

∣

∣

∣

〈x∗, σn(f,P∞)〉 −

∫

S

〈x∗, f〉dµ

∣

∣

∣

∣

= 0 for all x∗ ∈ X∗.
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Then

lim
m→∞

sup
{(Ei,ti)}16i6p∈PΠf (∆m)

∣

∣

∣

∣

〈

x∗,

p
∑

i=1

µ(Ei)f(ti)

〉

−

∫

p⋃

i=1

Ei

〈x∗, f〉dµ

∣

∣

∣

∣

= 0

for all x∗ ∈ X∗, where PΠf (∆m) denotes the collection of all finite partial McShane

partitions of S subordinate to ∆m.

P r o o f. We will follow the same line of reasoning as in the proof of [7], Lemma 2B

with suitable modifications. Let x∗ ∈ X∗ and ε > 0. By the hypothesis, there exists

a positive integer N such that

sup
P∞∈Π∞(∆m)

lim sup
n→∞

∣

∣

∣

∣

〈x∗, σn(f,P∞)〉 −

∫

S

〈x∗, f〉dµ

∣

∣

∣

∣

6
ε

2
for all m > N.

Now fix for the moment m > N and let {(Ei, ti)}16i6p be a member of PΠf (∆m).

Let E :=
p
⋃

i=1

Ei . As 〈x∗, f〉|S\E is M-integrable (by Theorem 3.1 (3)), we may select

a generalized McShane partition {(Fi, ui)}i>1 of S \ E (which may depend on x∗)

subordinate to ∆m such that

lim sup
n→∞

∣

∣

∣

∣

〈

x∗,

n
∑

i=1

µ(Fi)f(ui)

〉

−

∫

S\E

〈x∗, f〉dµ

∣

∣

∣

∣

6
ε

2
.

Set

Ep+i := Fi and tp+i := ui, i > 1.

Then {(Ei, ti)}i>1 is a generalized McShane partition of S that is subordinate to ∆m

and

∣

∣

∣

∣

〈

x∗,

p
∑

i=1

µ(Ei)f(ti)−

∫

E

〈x∗, f〉dµ

∣

∣

∣

∣

=

∣

∣

∣

∣

〈

x∗,

p+n
∑

i=1

µ(Ei)f(ti)

〉

−

∫

S

〈x∗, f〉dµ−

〈

x∗,

n
∑

i=1

µ(Fi)f(ui)

〉

+

∫

S\E

〈x∗, f〉dµ

∣

∣

∣

∣

6

∣

∣

∣

∣

〈

x∗,

p+n
∑

i=1

µ(Ei)f(ti)

〉

−

∫

S

〈x∗, f〉dµ

∣

∣

∣

∣

+

∣

∣

∣

∣

〈

x∗,

n
∑

i=1

µ(Fi)f(ui)

〉

−

∫

S\E

〈x∗, f〉dµ

∣

∣

∣

∣

.

Letting n → ∞, we get

∣

∣

∣

∣

〈

x∗,

p
∑

i=1

µ(Ei)f(ti)

〉

−

∫

E

〈x∗, f〉dµ

∣

∣

∣

∣

6
ε

2
+

ε

2
= ε.
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Taking the supremum over {(Ei, ti)}16i6p ∈ PΠf (∆m) in this inequality yields

sup
{(Ei,ti)}16i6p∈PΠf (∆m)

∣

∣

∣

∣

〈

x∗,

p
∑

i=1

µ(Ei)f(ti)

〉

−

∫

p⋃

i=1

Ei

〈x∗, f〉dµ

∣

∣

∣

∣

6 ε.

This holds for all m > N . Thus

lim
m→∞

sup
{(Ei,ti)}16i6p∈PΠf (∆m)

∣

∣

∣

∣

〈

x∗,

p
∑

i=1

µ(Ei)f(ti)

〉

−

∫

p⋃

i=1

Ei

〈x∗, f〉dµ

∣

∣

∣

∣

= 0.

�

The next result is a reformulation of Proposition 2E of [7] for the weak McShane

integral. Its proof is a modified version of the proof of Fremlin.

Proposition 3.4. Let f : S → X be a function and let E ∈ Σ. Then 1Ef is

WM-integrable on S if and only if the restriction f|E is WM-integrable on E, and

the two integrals are equal.

P r o o f. Set g := 1Ef . If g is WM-integrable on S, then by Lemma 3.1 there

exists a sequence (∆m) of gauges from S into T such that

lim
m→∞

sup
P∞∈Π∞|E(∆m)

lim sup
n→∞

∣

∣

∣

∣

〈x∗, σn(g,P∞)〉 −

∫

E

〈x∗, g〉dµ

∣

∣

∣

∣

= 0

for all x∗ ∈ X∗ with

∫

E

〈x∗, g〉dµ =

∫

S

1E〈x
∗, g〉dµ =

∫

S

〈x∗, g〉dµ =

〈

x∗, (WM)

∫

S

g dµ

〉

,

where the last equality follows from Corollary 3.1. As g|E = f|E , we obtain

lim
m→∞

sup
P∞∈Π∞|E(∆m)

lim sup
n→∞

∣

∣

∣

∣

〈x∗, σn(f,P∞)〉 −

〈

x∗, (WM)

∫

S

g dµ

〉
∣

∣

∣

∣

= 0

for all x∗ ∈ X∗. Thus f|E is WM-integrable on E, with integral (WM)
∫

E
f|E dµ =

(WM)
∫

S
g dµ. Conversely, suppose that f|E is WM-integrable on E and set ̟E :=

(WM)
∫

E
f|E dµ. To prove that g is WM-integrable on S, we will use several argu-

ments of the proof of Proposition 2E, [7] with appropriate modifications. Let (∆m,E)

be a sequence of gauges from E into T such that

lim
m→∞

sup
P∞∈Π∞|E(∆m,E)

lim sup
n→∞

|〈x∗, σn(f,P∞)〉 − 〈x∗, ̟E〉| = 0 for all x∗ ∈ X∗.
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Noting that

〈x∗, ̟E〉 =

∫

E

〈x∗, f|E〉dµ =

∫

E

〈x∗, f〉dµ

and applying the Weak Saks-Henstock Lemma to f|E, we get

lim
m→∞

sup
{(Ei,ti)}16i6p∈PΠf (∆m,E)

∣

∣

∣

∣

〈

x∗,

p
∑

i=1

µ(Ei)f(ti)

〉

−

∫

p⋃

i=1

Ei

〈x∗, f〉dµ

∣

∣

∣

∣

= 0

for all x∗ ∈ X∗. Then for any fixed ε > 0 and x∗ ∈ X∗ there exists a positive integer

N such that

(3.4.1) sup
{(Ei,ti)}16i6p∈PΠf (∆m,E)

∣

∣

∣

∣

〈

x∗,

p
∑

i=1

µ(Ei)f(ti)

〉

−

∫

p⋃

i=1

Ei

〈x∗, f〉dµ

∣

∣

∣

∣

6 ε

for every m > N . Now for each n > 1, choose a closed set Fn and an open set On

with Fn ⊂ E ⊂ On such that

(3.4.2) µ(E \ Fn) 6
1

n

and

(3.4.3) µ(On \ E) 6
2−n

n+ 1
ε

and define the sequence (∆m) of gauges from S into T by

∆m(t) :=

{

∆m,E(t) ∩On if t ∈ E and n 6 ‖f(t)‖ < n+ 1,

S \ Fm if t ∈ S \ E.

Let ({(Em
i , tmi )}i>1)m>1 be a sequence of generalized McShane partitions of S

adapted to (∆m) and for each i > 1 set

Hm
i :=

{

Em
i ∩E if tmi ∈ E,

∅ otherwise.

Since ({(Hm
i , tmi )}i>1)m>1 is a sequence of partial McShane partitions of E adapted

to (∆m,E), (3.4.1) gives

∣

∣

∣

∣

〈

x∗,

n
∑

i=1

µ(Hm
i )f(tmi )

〉

−

∫

n⋃

i=1

Hm
i

〈x∗, f〉dµ

∣

∣

∣

∣

6 ε
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for every n > 1 and for every m > N . Therefore, by the triangle inequality and the

definition of Hm
i , we find that

∣

∣

∣

∣

〈

x∗,

n
∑

i=1

µ(Em
i )g(tmi )

〉

−

∫

n⋃

i=1

Hm
i

〈x∗, f〉dµ

∣

∣

∣

∣

6

∣

∣

∣

∣

〈

x∗,

n
∑

i=1

µ(Em
i )g(tmi )

〉

−

〈

x∗,

n
∑

i=1

µ(Hm
i )f(tmi )

〉
∣

∣

∣

∣

+

∣

∣

∣

∣

〈

x∗,

n
∑

i=1

µ(Hm
i )f(tmi )

〉

−

∫

n⋃

i=1

Hm
i

〈x∗, f〉dµ

∣

∣

∣

∣

6
∑

{i=1,...,n, tm
i
∈E}

µ(Em
i \ E)‖f(tmi )‖+ ε

=

∞
∑

k=1

∑

{i=1,...,n, tm
i
∈E,k6‖f(tm

i
)‖<k+1}

µ(Em
i \ E)‖f(tmi )‖+ ε

for every n > 1 and for every m > N . As Em
i ⊂ ∆(tmi ) ⊂ Ok for all i > 1 such that

ti ∈ E and k 6 ‖f(tmi )‖ < k + 1, we obtain

(3.4.4)

∣

∣

∣

∣

〈

x∗,

n
∑

i=1

µ(Em
i )g(tmi )

〉

−

∫

n⋃

i=1

Hm
i

〈x∗, f〉dµ

∣

∣

∣

∣

6

∞
∑

k=1

(k + 1)µ(Ok \ E) + ε 6

∞
∑

k=1

2−kε+ ε = 2ε

for every n > 1 and for every m > N . On the other hand, we have

(3.4.5)

∣

∣

∣

∣

∫

E

〈x∗, f〉dµ−

∫

∞⋃

i=1

Hm
i

〈x∗, f〉dµ

∣

∣

∣

∣

6

∫

E\Fm

|〈x∗, f〉| dµ

because, for every m > 1,

E =

[

⋃

i>1,tm
i
∈E

(E ∩ Em
i )

]

∪

[

⋃

i>1,ti∈S\E

(E ∩ Em
i )

]

⊂

( ∞
⋃

i=1

Hm
i

)

∪

[

⋃

i>1,ti∈S\E

(E ∩∆m(tmi ))

]

=

( ∞
⋃

i=1

Hm
i

)

∪ (E \ Fm) ⊂ E,
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in view of the definition of Hm
i and ∆m. Putting (3.4.4) and (3.4.5) together, we get

∣

∣

∣

∣

〈

x∗,

n
∑

i=1

µ(Em
i )g(tmi )

〉

− 〈x∗, ̟E〉

∣

∣

∣

∣

6

∣

∣

∣

∣

〈

x∗,

n
∑

i=1

µ(Em
i )g(tmi )

〉

−

∫

n⋃

i=1

Hm
i

〈x∗, f〉dµ

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

E

〈x∗, f〉dµ−

∫

∞⋃

i=1

Hm
i

〈x∗, f〉dµ

∣

∣

∣

∣

6 2ε+

∫

E\Fm

|〈x∗, f〉| dµ

for every n > 1 and for every m > N . As (3.4.1) and the integrability of 〈x∗, f〉 on

E ensure

lim
m→∞

∫

E\Fm

|〈x∗, f〉| dµ = 0,

we obtain

lim sup
m→∞

lim sup
n→∞

∣

∣

∣

∣

〈

x∗,

n
∑

i=1

µ(Em
i )g(tmi )

〉

− 〈x∗, ̟E〉

∣

∣

∣

∣

6 2ε,

and hence

lim
m→∞

lim sup
n→∞

∣

∣

∣

∣

〈

x∗,

n
∑

i=1

µ(Em
i )g(tmi )

〉

− 〈x∗, ̟E〉

∣

∣

∣

∣

= 0,

by the arbitrariness of ε. Thus g is WM-integrable on S with integral ̟E. �

Corollary 3.3. A function f : S → X is WM-integrable on Σ if and only if it

is WM-integrable on S and Pettis integrable, and the corresponding integrals are

equal.

P r o o f. The only “if part” is proved by Corollary 3.1, whereas the “if part” is

a direct consequence of Proposition 3.4 and Corollary 3.2. �

We conclude this section by providing the following lemma which, together with

Theorem 2.3, will play a crucial role in Section 4.

Lemma 3.3. Suppose that f : S → X isWM-integrable on S, (∆m) is a sequence

of gauges from S into T as given in Definition 3.2 (or in Proposition 3.2) and R is

a measurable set of finite measure. Then given any sequence ({(Em
i , tmi )}i>1)m>1

of generalized McShane partitions of S adapted to (∆m), there exists a strictly

increasing sequence (pm)m>1 of positive integers such that

lim
m→∞

〈

x∗,

pm
∑

i=1

µ(R ∩ E ∩Em
i )f(tmi )

〉

=

∫

R∩E

〈x∗, f〉dµ

for every x∗ ∈ X∗ and for every E ∈ Σ.
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P r o o f. By Proposition 3.2

(a) lim
m→∞

sup
P∞∈Π∞(∆m)

lim sup
n→∞

∣

∣

∣

∣

〈x∗, σn(f,P∞)〉 −

〈

x∗, (WM)

∫

S

f dµ

〉
∣

∣

∣

∣

= 0

for every x∗ ∈ X∗. Let ({(Em
i , tmi )}i>1)m>1 be a sequence of generalized McShane

partitions of S adapted to (∆m) and let (pm)m>1 be a strictly increasing sequence

of positive integers such that

(b) lim
m→∞

µ

(

R \

pm
⋃

i=1

Em
i

)

= 0.

Let E ∈ Σ and let x∗ ∈ X∗. Since {(R ∩ E ∩ Em
i , tmi )}i>1 is an infinite partial

McShane partition of S that is subordinate to ∆m for each m > 1, equality (a) and

Lemma 3.2 yield

lim sup
m→∞

∣

∣

∣

∣

〈

x∗,

pm
∑

i=1

µ(R ∩ E ∩ Em
i )f(tmi )

〉

−

∫

pm⋃

i=1

R∩E∩Em
i

〈x∗, f〉dµ

∣

∣

∣

∣

6 lim
m→∞

sup
{(Fi,ui)}16i6p∈PΠf (∆m)

∣

∣

∣

∣

〈

x∗,

p
∑

i=1

µ(Fi)f(ui)

〉

−

∫

p⋃

i=1

Fi

〈x∗, f〉dµ

∣

∣

∣

∣

= 0.

Moreover, one has

lim
m→∞

∫

pm⋃

i=1

R∩E∩Em
i

〈x∗, f〉dµ =

∫

R∩E

〈x∗, f〉dµ,

because 〈x∗, f〉 is integrable and lim
m→∞

µ
(pm
⋃

i=1

R ∩ E ∩ Em
i

)

= µ(R ∩ E) (by (b)).

Hence

lim
m→∞

〈

x∗,

pm
∑

i=1

µ(R ∩ E ∩ Em
i )f(tmi )

〉

=

∫

R∩E

〈x∗, f〉dµ.

�

4. Weak McShane integrability from S to Σ

In this section we attempt to determine when weak McShane integrability passes

from S to Σ.

The following theorem due to the first author will play a crucial role in this section.

It represents the combined efforts of Theorem 2.3, Lemma 3.2 and Lemma 4.1 below.
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Theorem 4.1 (M. Saadoune). If a function f : S → X is WM-integrable on S,

then there exists an increasing sequence (Sl)l>1 in Σf with union S such that 1Sl
f

is Pettis integrable and WM-integrable on Σ for each l > 1.

Lemma 4.1. If f : S → X is a scalarly integrable function, then there exists an

increasing sequence (Sl)l>1 in Σf with union S such that {〈x∗, 1Sl
f〉 : x∗ ∈ BX∗} is

uniformly integrable for each l > 1.

P r o o f. Since µ is σ-finite, there is an increasing sequence (Rk)k>1 in Σf such

that S =
⋃

k>1

Rk. For each k > 1, set

Ck := {t ∈ Rk : ‖f(t)‖ 6 k}.

Then (Ck)k>1 is an increasing sequence with union S and µ∗(Ck) < ∞ for all k > 1,

where µ∗ stands for the outer measure induced by µ. Let Dk ∈ Σf be such that

Ck ⊂ Dk and µ(Dk) = µ∗(Ck). Since f is uniformly bounded on Ck and µ∗(Ck) =

µ(Dk), 〈x∗, f〉 is uniformly bounded almost everywhere on Dk for each x∗ ∈ X∗. Set

Sl :=

l
⋃

k=1

Dk, l > 1.

Clearly, (Sl)l>1 is a non-decreasing sequence in Σf with union S. Further, the

function {〈x∗, 1Sl
f〉 is uniformly bounded almost everywhere for each x∗ ∈ X∗ and

each l > 1, in turn {〈x∗, 1Sl
f〉 : x∗ ∈ BX∗} is uniformly integrable. �

Remark 4.1. Actually, repeating several arguments used in the proof of The-

orem 4 of [13], Lemma 4.1 remains valid when dealing only with σ-finite positive

measure spaces instead of σ-finite outer regular quasi-Radon measure spaces.

P r o o f of Theorem 4.1. Let (Sl)l>1 be the sequence given in Lemma 4.1. Let

(∆m) be as mentioned in Definition 3.2 and let ({(Em
i , tmi )}i>1)m>1 be a fixed se-

quence of generalized McShane partitions of S adapted to (∆m). Then for any fixed

l > 1, Lemma 3.3 provides a strictly increasing sequence (pm)m>1 of positive integers

(possibly depending on l) such that

lim
m→∞

〈

x∗,

pm
∑

i=1

µ(Sl ∩ Em
i ∩ E)f(tmi )

〉

=

∫

Sl∩E

〈x∗, f〉dµ

for all x∗ ∈ X∗ and for all E ∈ Σ. In other words, this equality becomes

lim
m→∞

∫

Sl∩E

〈

x∗,

pm
∑

i=1

1Em
i
f(tmi )

〉

dµ =

∫

Sl∩E

〈x∗, f〉dµ
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for all x∗ ∈ X∗ and for all E ∈ Σ. As the functions
pm
∑

i=1

1Em
i
f(tmi ) (m > 1) are

obviously Pettis integrable and, by Lemma 4.1, the set {〈x∗, 1Sl
f〉 : x∗ ∈ BX∗}

is uniformly integrable, it follows from Theorem 2.3 that 1Sl
f is Pettis integrable.

Therefore, by Corollary 3.2, f|Sl
is WM-integrable on Sl. Equivalently, 1Sl

f is WM-

integrable on S, in view of Proposition 3.4. The desired conclusion then follows from

Corollary 3.3. �

In certain interesting situations, the weak McShane integrability passes from S to

Σ as the following results (Theorems 4.2–4.5) show.

Theorem 4.2. Let f : S → X be a function. If the following two conditions hold:

(j) f is WM-integrable on S and

(jj) lim
n→∞

sup
x∗∈BX∗

∣

∣

∣

∫

Fn

〈x∗, f〉dµ
∣

∣

∣
= 0

whenever (Fn) is a non-increasing sequence in Σ with empty intersection, then

f is Pettis integrable. Consequently, f is WM-integrable on Σ.

P r o o f. Fix ε > 0. Then, by condition (jj) and Remark 2.1, there are E0 ∈ Σf

and η > 0 such that
∣

∣

∣

∣

∫

E

〈x∗, f〉dµ

∣

∣

∣

∣

6
ε

2

for every x∗ ∈ BX∗ and for every E ∈ Σ with µ(E ∩ E0) 6 η. Now let (Sl)l>1 be

given as in Theorem 4.1. As
⋃

l>1

Sl = S, we may choose an integer l0 > 1 such that

µ(E0 \ Sl) 6 η for every l > l0; therefore

∣

∣

∣

∣

∫

E\Sl

〈x∗, f〉dµ

∣

∣

∣

∣

6
ε

2

for every x∗ ∈ BX∗ , for every E ∈ Σ and for every l > l0. Together with the Pettis

integrability of each function 1Sl
f , we get

∣

∣

∣

∣

〈

x∗, (Pe)

∫

E∩Sl

f dµ− (Pe)

∫

E∩Sl′

f dµ

〉
∣

∣

∣

∣

=

∣

∣

∣

∣

∫

E∩Sl

〈x∗, f〉dµ−

∫

E∩Sl′

〈x∗, f〉dµ

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

E\Sl

〈x∗, f〉dµ−

∫

E\Sl′

〈x∗, f〉dµ

∣

∣

∣

∣

6
ε

2
+

ε

2
= ε

for all E ∈ Σ, l > l′ > l0 and x∗ ∈ BX∗ . Taking the supremum over BX∗ in the

above estimation yields

∥

∥

∥

∥

(Pe)

∫

E∩Sl

f dµ− (Pe)

∫

E∩Sl′

f dµ

∥

∥

∥

∥

6 ε
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for all E ∈ Σ and for all l > l′ > l0. This shows that ((Pe)
∫

E∩Sl
f dµ)l>1 is a Cauchy

sequence in X , so it necessarily converges to an element xE ∈ X with respect to the

norm topology. In particular, we have

lim
l→∞

〈

x∗, (Pe)

∫

E∩Sl

f dµ

〉

= 〈x∗, xE〉 for all x∗ ∈ BX∗ .

As

lim
l→∞

〈

x∗, (Pe)

∫

E∩Sl

f dµ

〉

= lim
l→∞

∫

E∩Sl

〈x∗, f〉dµ =

∫

E

〈x∗, f〉dµ

for all x∗ ∈ BX∗ and all E ∈ Σ, we obtain

∫

E

〈x∗, f〉dµ = 〈x∗, xE〉.

Thus f is Pettis integrable, and hence WM-integrable on Σ, in view of Corollary 3.2.

�

Corollary 4.1. A function f : S → X is WM-integrable on Σ if and only if

(j) f is WM-integrable on S and

(jj) lim
n→∞

sup
x∗∈BX∗

∣

∣

∣

∣

∫

Fn

〈x∗, f〉dµ

∣

∣

∣

∣

= 0

whenever (Fn) is a non-increasing sequence in Σ with empty intersection.

Condition (jj) may be replaced by

(jj)′ {〈x∗, f〉 : x∗ ∈ BX∗} is uniformly integrable.

P r o o f. Sufficiency is established by the preceding theorem. Necessity follows

from Corollary 3.1, a lemma of Musial in ([13], page 162), Theorems 2.1–2.2 and

Remark 2.1. �

Theorem 4.3. Suppose thatX is weakly sequentially complete and let f : S → X

be a function. If f isWM-integrable on S, then it is Pettis integrable. Consequently,

f is WM-integrable on Σ if and only if it is WM-integrable on S.

P r o o f. Let (Sl)l>1 be given as in Theorem 4.1 and let E ∈ Σ. As each function

1Sl
f is Pettis integrable, we have

〈

x∗, (Pe)

∫

E∩Sl

f dµ

〉

=

∫

E∩Sl

〈x∗, f〉dµ for all x∗ ∈ X∗.

Letting l go to ∞, we get

lim
l→∞

〈

x∗, (Pe)

∫

E∩Sl

f dµ

〉

=

∫

E

〈x∗, f〉dµ for all x∗ ∈ X∗
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(because Sl ↑ S and 〈x∗, f〉 ∈ L1
R
(µ)). So ((Pe)

∫

E∩Sl
f dµ)l>1 is a weak Cauchy

sequence in X , therefore it w-converges to an element ̟E ∈ X , since, by hypothesis,

X is weakly sequentially complete. By identifying the limits we get

〈x∗, ̟E〉 =

∫

E

〈x∗, f〉dµ.

This happens for all E ∈ Σ, so f is Pettis integrable. The main implication of the

second part of the theorem follows then from Corollary 3.2. �

Corollary 4.2. Suppose X = L1(Ω,F , ν) (for any σ-finite measure space

(Ω,F , ν)) and let f : S → X be a function. Then the following conditions are

equivalent:

(1) f isM-integrable,

(2) f is WM-integrable on Σ,

(3) f is WM-integrable on S,

(4) f is Pettis integrable.

P r o o f. As we have already mentioned in the previous section, every M-

integrable function, is WM-integrable on Σ, by Proposition 3.1. Now the implica-

tion (2) ⇒ (3) is obvious, implication (3) ⇒ (4) follows from Theorem 4.3, because

L1(Ω,F , ν) is weakly sequentially complete. Further (4) ⇒ (1) is due to R. Deville

and J. Rodríguez ([3], Corollary 3.8). �

Theorem 4.4. Suppose that X does not contain any isomorphic copy of c0 and

let f : S → X be a function. If f isWM-integrable on S, then it is Pettis integrable.

Consequently, f is WM-integrable on Σ if and only if it is WM-integrable on S.

P r o o f. Using Theorem 4.1 we obtain an increasing sequence (Sl)l>1 in Σf with
⋃

l>1

Sl = S such that 1Sl
f is Pettis integrable for each l > 1. Define the sequence

(S′
l)l>1 in Σ by

S′
1 := S1 and S′

l := Sl \ Sl−1 for l > 1

and let E ∈ Σ. Then we have

∫

E

|〈x∗, f〉| dµ =

∫

⋃

l>1

E∩S′
l

|〈x∗, f〉| dµ =

∞
∑

l=1

∫

E∩S′
l

|〈x∗, f〉| dµ

>

∞
∑

l=1

∣

∣

∣

∣

∫

E∩S′
l

〈x∗, f〉dµ

∣

∣

∣

∣

=
∞
∑

l=1

∣

∣

∣

∣

〈

x∗, (Pe)

∫

E∩S′
l

f dµ

〉∣

∣

∣

∣
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for all x∗ ∈ X∗. Since f is scalarly integrable (by Corollary 3.1), it follows that

the series
∑

l>1

|〈x∗, (Pe)
∫

E∩S′
l

f dµ〉| is convergent for all x∗ ∈ X∗. Therefore, we can

invoke the sequence characterization of Bessaga and Pe lczyński of Banach spaces not

containing c0 ([4], Corollary I.4.5), which shows that the series
∑

l>1

(Pe)
∫

E∩S′
l

f dµ is

unconditionally convergent in the norm topology to an element xE ∈ X , so

lim
n→∞

∥

∥

∥

∥

n
∑

l=1

(Pe)

∫

E∩S′
l

f dµ− xE

∥

∥

∥

∥

= 0,

which implies

lim
n→∞

n
∑

l=1

〈

x∗, (Pe)

∫

E∩S′
l

f dµ

〉

= 〈x∗, xE〉 for all x∗ ∈ X∗.

As

lim
n→∞

n
∑

l=1

〈

x∗, (Pe)

∫

E∩S′
l

f dµ

〉

= lim
n→∞

n
∑

l=1

∫

E∩S′
l

〈x∗, f〉dµ

= lim
n→∞

∫

E∩
n⋃

l=1

S′
l

〈x∗, f〉dµ =

∫

E

〈x∗, f〉dµ,

we get
∫

E

〈x∗, f〉dµ = 〈x∗, xE〉 for all x∗ ∈ X∗.

Since this holds for all E ∈ Σ, we conclude that f is Pettis integrable. The main

implication of the second part of the theorem follows then from Corollary 3.2. �

Remark 4.2. Recalling that L1(Ω,F , ν) does not contain any isomorphic copy

of c0 (because L1(Ω,F , ν) is weakly sequentially complete and c0 does not enjoy

this property), implication (3) ⇒ (4) of Corollary 4.2 can also be derived from the

preceding theorem.

It is worth giving the following variant of Theorems 4.2–4.4

Theorem 4.5. Suppose that µ(S) = 1 and let f : S → X be a function. If f is

WM-integrable on S and if there exists a fixed closed convex and w-ball-compact

subset Γ of X with 0 ∈ Γ (that is, Γ is w-ball-compact if the intersection of Γ with

every closed ball is weakly compact) such that

f(t) ∈ Γ a.e.,

then f is WM-integrable on Σ.
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P r o o f. Taking into account Theorem 3.2 (iii), we may suppose, without loss

of generality, that f(t) ∈ Γ for all t ∈ S. According to Lemma 3.4, we can choose

a sequence ({(Em
i , tmi )}i>1)m>1 of generalized McShane partitions of S and a strictly

increasing sequence (pm) of positive integers such that

lim
m→∞

〈

x∗,

pm
∑

i=1

µ(E ∩ Em
i )f(tmi )

〉

=

∫

E

〈x∗, f〉dµ

for all x∗ ∈ X∗ and for all E ∈ Σ. So (
m
∑

i=1

µ(E ∩ Em
i )f(tmi )) is a weak Cauchy

sequence in X , and r := sup
m>1

‖
m
∑

i=1

µ(E ∩ Em
i )f(tmi )‖ < ∞. Furthermore, since Γ is

convex and contains 0,
pm
∑

i=1

µ(E ∩Em
i )f(tmi ) ∈ Γ for all m > 1. So, the sum

pm
∑

i=1

µ(E ∩

Em
i )f(tmi ) belongs to the w-compact set B(0, r) ∩ Γ for each m > 1. Consequently,

(pm
∑

i=1

µ(E∩Em
i )f(tmi )

)

w-converges to an element ̟E ∈ X . By identifying the limits

we get 〈x∗, ̟E〉 =
∫

E
〈x∗, f〉dµ and so, by the arbitrariness of E ∈ Σ, f is Pettis

integrable. �

The next theorem is a weak McShane version of Theorem 15 of Gordon [12] dealing

with the McShane integral on [0, 1]. We first recall some definitions and known facts

about series ([1], [4], [16]).

Given a series
∑

n>1

xn with values in X , recall that
∑

n>1

xn is called:

⊲ weakly convergent or convergent in norm if the sequence of its partial sums
i
∑

n=1
xn

w-converges or converges in norm, respectively.

⊲ unconditionally convergent in norm if the series
∑

k>1

xπ(k) converges in norm for

every sequence (xπ(k)) whenever π is a permutation of N; equivalently, if all series

of the form
∑

k>1

xϕ(k) where ϕ is a strictly increasing mapping from N onto N

converge in norm.

⊲ scalarly (alias weakly) absolutely convergent if
∑

n>1

|〈x∗, xn〉| < ∞ for all x∗ ∈ X∗.

We say also that
∑

n>1

xn is weakly unconditionally Cauchy.

It is known that the following implications hold:
∑

n>1

xn is unconditionally convergent in norm ⇒
∑

n>1

xn is scalarly absolutely con-

vergent.
∑

n>1

xn is unconditionally convergent in norm ⇒
∑

n>1

xn is convergent in norm ⇒
∑

n>1

xn is weakly convergent.
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Moreover, no one of these arrows can be reversed in general (see [1], Example 5,

page 341). More precisely, the following conditions are equivalent (see [1], page 337):

(C1) There exists a scalarly absolutely convergent series which is convergent in

norm, but is not unconditionally convergent in norm.

(C2) There exists a scalarly absolutely convergent series which is weakly convergent,

but is not convergent in norm.

(C3) There exists a scalarly absolutely convergent series which is not weakly con-

vergent.

(C4) The space X has a copy of c0.

Theorem 4.6 (M. Saadoune). Let (En)n>1 be a sequence of disjoint subsets of

Σ, let (xn)n>1 be a sequence in X , and let f : S → X be the function defined by

f(t) :=

∞
∑

n=1

xn1En
(t) (t ∈ S).

If the series
∑

n>1

µ(En)xn is scalarly absolutely convergent, then f is scalarly inte-

grable, and there is a sequence (∆m) of gauges from S into T such that

lim
m→∞

sup
P∞∈Π∞(∆m)

lim sup
n→∞

∣

∣

∣

∣

〈x∗, σn(f,P∞)〉 −

∫

S

〈x∗, f〉dµ

∣

∣

∣

∣

= 0

for all x∗ ∈ X∗ with

∫

S

〈x∗, f〉dµ =
∞
∑

n=1

µ(En)〈x
∗, xn〉.

Consequently, f is WM-integrable on S if and only if the series
∑

n>1

µ(En)xn is

weakly convergent and scalarly absolutely convergent. In this case we have

(WM)

∫

S

f dµ = w-

∞
∑

n=1

µ(En)xn.

P r o o f. For each k > 1 define

fk(t) :=

k
∑

i=1

xi1Ei
(t).

As

(4.6.1)

∫

S

|〈x∗, f〉| dµ =

∫

S

∞
∑

i=1

1Ei
|〈x∗, xi〉| dµ

=

∞
∑

i=1

∫

S

1Ei
|〈x∗, xi〉| dµ =

∞
∑

i=1

µ(Ei)|〈x
∗, xi〉|
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for all x∗ ∈ X∗, and the series
∑

n>1

µ(En)xn is scalarly absolutely convergent, f is

scalarly integrable and hence

(4.6.2)

∫

S

〈x∗, f〉dµ =

∫

S

lim
k→∞

〈x∗, fk〉dµ = lim
k→∞

∫

S

〈x∗, fk〉dµ =
∞
∑

i=1

µ(Ei)〈x
∗, xi〉,

by making use of the dominated convergence theorem, since

|〈x∗, fk〉| 6 |〈x∗, f〉| for all x∗ ∈ X∗ and for all k > 1.

Next, by Proposition 1C (a) and Lemma 1I in [7], it is clear that each fk is M-

integrable on S and

(M)

∫

S

fk dµ =
k
∑

i=1

µ(Ei)xi.

Therefore, we can invoke Lemma 2B of [7], which provides a gauge Λk : S → T such

that

(4.6.3) sup
{(Fj ,tj)}16j6n∈PΠf (Λk)

∥

∥

∥

∥

n
∑

j=1

µ(Fj)fk(tj)−
k

∑

i=1

µ(Ei)xi

∥

∥

∥

∥

6
1

2k
.

Next, for each m > 1 set

Am :=

m
⋃

i=1

Ei ∪

(

S \
∞
⋃

i=1

Ei

)

and, for each p > m

Bm
p := Am for p = m and Bm

p := Ep for p > m.

Noting that for each m > 1 the Bm
p ’s are pairwise disjoint measurable sets and

∞
⋃

p=m

Bm
p = S, we define a gauge ∆m : S → T by

∆m(t) :=

k
⋂

i=1

Λi(t), for t ∈ Bm
k k > m.

Fix m for the moment and let Pm
∞ := {(Fm

j , tmj )}j>1 be a generalized McShane par-

tition of S subordinate to ∆m. Fix x∗ in X∗. We seek to estimate |〈x∗, σn(fk,Pm
∞)−
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k
∑

i=1

µ(Ei)xi〉|, where k > m is an arbitrary fixed integer. To this end, define sets Ip

(p > m), J1
k and J2

k by

Ip := {j > 1: tmj ∈ Bm
p }, J1

k :=
⋃

m6p<k

Ip and J2
k :=

⋃

p>k

Ip

and collections

Pm,p
∞ := {(Fm

j , tmj )}
j∈Ip

,Qm
∞ := {(Fm

j , tmj )}
j∈J1

k

and Rm
∞ := {(Fm

j , tmj )}
j∈J2

k

.

It is clear that J1
k ∪ J2

k =
⋃

p>m

Ip = N
∗, since

∞
⋃

p=m

Bm
p = S. Further, observe that

Pm,p
∞ is subordinate to Λp for each m 6 p < k, and that Rm

∞ is subordinate to Λk.

Then by (4.6.3)

(4.6.4)

∥

∥

∥

∥

∑

j∈Ip,j6n

µ(Fm
j )fp(t

m
j )−

p
∑

i=1

µ

(

Ei ∩

(

⋃

j∈Ip,j6n

Fm
j

))

xi

∥

∥

∥

∥

6
1

2p

for each m 6 p < k and

(4.6.5)

∥

∥

∥

∥

∑

j∈J2
k
,j6n

µ(Fm
j )fk(t

m
j )−

k
∑

i=1

µ

(

Ei ∩

(

⋃

j∈J2
k
,j6n

Fm
j

))

xi

∥

∥

∥

∥

6
1

2k
.

Next, by the definition of J1
k and the triangle inequality we have

∣

∣

∣

∣

〈

x∗,
∑

j∈J1
k
,j6n

µ(Fm
j )fk(t

m
j )

〉

−

〈

x∗,
k

∑

i=1

µ

(

Ei ∩

(

⋃

j∈J1
k
,j6n

Fm
j

))

xi

〉∣

∣

∣

∣

6

k−1
∑

p=m

∣

∣

∣

∣

〈

x∗,
∑

j∈Ip,j6n

µ(Fm
j )fk(t

m
j )

〉

−

〈

x∗,
∑

j∈Ip,j6n

µ(Fm
j )fp(t

m
j )

〉
∣

∣

∣

∣

+

k−1
∑

p=m

∣

∣

∣

∣

〈

x∗,
∑

j∈Ip,j6n

µ(Fm
j )fp(t

m
j )

〉

−

〈

x∗,

p
∑

i=1

µ

(

Ei ∩

(

⋃

j∈Ip,j6n

Fm
j

))

xi

〉∣

∣

∣

∣

+
k−1
∑

p=m

∣

∣

∣

∣

〈

x∗,

p
∑

i=1

µ

(

Ei ∩

(

⋃

j∈Ip,j6n

Fm
j

))

xi

〉

−

〈

x∗,

k
∑

i=1

µ

(

Ei ∩

(

⋃

j∈Ip,j6n

Fm
j

))

xi

〉∣

∣

∣

∣

.
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The first term on the right hand side, is equal to 0, since fk = fp on Bm
p for each

p > m, whereas the second term is, by (4.6.4), smaller than
k−1
∑

p=m

1/2p so that

∣

∣

∣

∣

〈

x∗,
∑

j∈J1
k
,j6n

µ(Fm
j )fk(t

m
j )

〉

−

〈

x∗
k
∑

i=1

µ

(

Ei ∩

(

⋃

j∈J1
k
,j6n

Fm
j

))

xi

〉∣

∣

∣

∣

6

k−1
∑

p=m

1

2p
+

k−1
∑

p=m

k
∑

i=p+1

|〈x∗, xi〉|µ

(

Ei ∩

(

⋃

j∈Ip,j6n

Fm
j

))

=

k−1
∑

p=m

1

2p
+

k
∑

i=m+1

i−1
∑

p=m

|〈x∗, xi〉|µ

(

Ei ∩

(

⋃

j∈Ip,j6n

Fm
j

))

=

k−1
∑

p=m

1

2p
+

k
∑

i=m+1

|〈x∗, xi〉|µ

(

Ei ∩

( i−1
⋃

p=m

⋃

j∈Ip,j6n

Fm
j

))

6

∞
∑

p=m

1

2p
+

∞
∑

i=m+1

|〈x∗, xi〉|µ(Ei).

By virtue of (4.6.5) and the decomposition

∣

∣

∣

∣

〈x∗, σn(fk,P
m
∞)〉 −

〈

x∗,

k
∑

i=1

µ

(

Ei ∩

( n
⋃

j=1

Fm
j

))

xi

〉∣

∣

∣

∣

=

〈

x∗,
∑

j∈J1
k
,j6n

µ(Fm
j )fk(t

m
j )

〉

−

〈

x∗,

k
∑

i=1

µ

(

Ei ∩

(

⋃

j∈J1
k
,j6n

Fm
j

))

xi

〉

+

〈

x∗,
∑

j∈J2
k
,j6n

µ(Fm
j )fk(t

m
j )

〉

−

〈

x∗,
k

∑

i=1

µ

(

Ei ∩

(

⋃

j∈J2
k
,j6n

Fm
j

))

xi

〉

we get

(4.6.6)

∣

∣

∣

∣

〈x∗, σn(fk,P
m
∞)〉 −

〈

x∗,

k
∑

i=1

µ

(

Ei ∩

( n
⋃

j=1

Fm
j

))

xi

〉
∣

∣

∣

∣

6

p=∞
∑

p=m

1

2p
+

∞
∑

i=m+1

µ(Ei)|〈x
∗, xi〉|+

1

2k
,
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which is valid for all k > 1. Noting that (fk) pointwise converges to f , we conclude

that
∣

∣

∣

∣

〈x∗, σn(f,P
m
∞)〉 −

∫

S

〈x∗, f〉dµ

∣

∣

∣

∣

=

∣

∣

∣

∣

〈x∗, σn(f,P
m
∞)〉 −

∞
∑

i=1

〈x∗, µ(Ei)xi〉

∣

∣

∣

∣

(by (4.6.2))

= lim
k→∞

∣

∣

∣

∣

〈x∗, σn(fk,P
m
∞)〉 −

〈

x∗,
k

∑

i=1

µ(Ei)xi

〉∣

∣

∣

∣

= lim
k→∞

[∣

∣

∣

∣

〈x∗, σn(fk,P
m
∞)〉 −

〈

x∗,

k
∑

i=1

µ

(

Ei ∩

( n
⋃

j=1

Fm
j

))

xi

〉

+

〈

x∗,
k
∑

i=1

µ

(

Ei ∩

( n
⋃

j=1

Fm
j

))

xi

〉

−

〈

x∗,
k

∑

i=1

µ(Ei)xi

〉∣

∣

∣

∣

]

6 lim sup
k→∞

∣

∣

∣

∣

〈x∗, σn(fk,P
m
∞)〉 −

〈

x∗,

k
∑

i=1

µ

(

Ei ∩

( n
⋃

j=1

Fm
j

))

xi

〉
∣

∣

∣

∣

+ lim sup
k→∞

∣

∣

∣

∣

〈

x∗,

k
∑

i=1

µ

(

Ei ∩

( ∞
⋃

j=n+1

Fm
j

))

xi

〉
∣

∣

∣

∣

6

∞
∑

p=m

1

2p
+

∞
∑

i=m+1

µ(Ei)|〈x
∗, xi〉| (by (4.6.6))

+

∞
∑

i=1

µ

(

Ei ∩

( ∞
⋃

j=n+1

Fm
j

))

|〈x∗, xi〉|.

This yields, by letting n → ∞ and m → ∞

lim sup
m→∞

lim sup
n→∞

∣

∣

∣

∣

〈x∗, σn(f,P
m
∞)〉 −

∫

S

〈x∗, f〉dµ

∣

∣

∣

∣

6 lim
m→∞

∞
∑

p=m

1

2p
+ lim

m→∞

∞
∑

i=m+1

µ(Ei)|〈x
∗, xi〉|

+ lim sup
m→∞

lim
n→∞

∞
∑

i=1

µ

(

Ei ∩
∞
⋃

j=n+1

Fm
j

)

|〈x∗, xi〉|

= lim sup
m→∞

lim
n→∞

∞
∑

i=1

µ

(

Ei ∩
∞
⋃

j=n+1

Fm
j

)

|〈x∗, xi〉|,

because, by hypothesis, the series
∑

i>1

µ(Ei)|〈x∗, xi〉| is convergent. Since the series

∑

i>1

µ
(

Ei ∩
∞
⋃

j=n+1

Fm
j

)

|〈x∗, xi〉 is dominated term-by-term by the convergent series
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∑

i>1

|〈x∗, xi〉|µ(Ei), and lim
n→∞

µ
(

Ei ∩
∞
⋃

j=n+1

Fm
j

)

= 0, the dominated convergence

theorem for series gives

lim sup
m→∞

lim
n→∞

∞
∑

i=1

µ

(

Ei ∩
∞
⋃

j=n+1

Fm
j

)

|〈x∗, xi〉|

= lim sup
m→∞

∞
∑

i=1

lim
n→∞

µ

(

Ei ∩
∞
⋃

j=n+1

Fm
j

)

|〈x∗, xi〉| = 0.

Thus

lim
m→∞

lim sup
n→∞

∣

∣

∣

∣

〈x∗, σn(f,P
m
∞)〉 −

∫

S

〈x∗, f〉dµ

∣

∣

∣

∣

= 0.

Now, if the series
∑

n>1

µ(En)xn is weakly convergent, then

∫

S

〈x∗, f〉dµ =

∞
∑

i=1

µ(Ei)〈x
∗, xi〉 =

〈

x∗, w-

∞
∑

i=1

µ(Ei)xi

〉

for all x∗ ∈ X∗

and therefore f is WM-integrable on S. Conversely, if f is WM-integrable on S,

then, by Corollary 3.1, it is scalarly integrable and

〈

x∗, (WM)

∫

S

f dµ

〉

=

∫

S

〈x∗, f〉dµ for all x∗ ∈ X∗.

Returning to the equalities (4.6.1) and (4.6.2)), we deduce that

∞
∑

i=1

µ(Ei)|〈x
∗, xi〉| < ∞ and

〈

x∗, (WM)

∫

S

f dµ

〉

=
∞
∑

i=1

µ(Ei)〈x
∗, xi〉

for every x∗ ∈ X∗. Hence, the series
∑

n>1

µ(En)xn is both scalarly absolutely and

weakly convergent. This completes the proof. �

In the next corollary, we provide a class of functions which are weakly McShane

integrable on S but not Pettis integrable.

Corollary 4.3. If X contains a copy of c0, then there is a function f : S → X

which is WM-integrable on S but not Pettis integrable.

P r o o f. From what has been said above, we may choose a series
∑

n>1

xn in X

which is both scalarly absolutely and weakly convergent, but not unconditionally
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convergent in the norm topology. Let (En)n>1 be any pairwise disjoint sequence of

measurable sets of strictly positive measure and define the function f : S → X by

f(t) :=

∞
∑

n=1

xn

1

µ(En)
1En

(t).

Then according to Theorem 4.6, f is WM-integrable on S, in view of the choice of
∑

n>1

xn. On the other hand, as
∑

n>1

xn is not unconditionally convergent, the Orlicz-

Pettis Theorem ([4], Corollary I.4.4) ensures the existence of a strictly increasing

sequence (kn) of positive integers such that the series
∑

n>1

xkn
is not weakly conver-

gent. Since f is scalarly integrable and

∫

Ekn

〈x∗, f〉dµ = 〈x∗, xkn
〉,

we have
∫

∞⋃

n=1

Ekn

〈x∗, f〉dµ =

∞
∑

n=1

∫

Ekn

〈x∗, f〉dµ =

∞
∑

n=1

〈x∗, xkn
〉,

which shows that f cannot be Pettis integrable, since otherwise the series
∑

n>1

xkn

would be weakly convergent. �

To close this section we would like to mention some open problems in connection

with the results of [3], [7], [5] and [14] dealing with McShane integrability.

Problem 1. Under the Continuum Hypothesis, Piazza-Preiss [5] and Rodríguez

[14] provided examples of scalarly null functions defined on [0, 1] (endowed with

the Lebesgue measure) which are not McShane integrable. In this connection, we

ask whether their function is WM-integrable on [0, 1] or not. The same question

arises for the function constructed by Fremlin and Mendoza ([10], Example 3C).

Unfortunately, we have been unable to find a function which is Pettis integrable but

not WM-integrable on a measurable subset of S. This leads us to put the following

question: Is every Pettis integrable Banach space valued function WM-integrable

on Σ? If the answer to this question is negative, is there a class of Banach spaces

including strictly the class of Hilbert generated Banach spaces for which these two

integrals are equivalent?

Recall that a function f : S → X is said to be scalarly null if for each x∗ ∈ X∗, the

real-valued function 〈x∗, f〉 vanishes almost everywhere (the exceptional set depends

on x∗).
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Problem 2. If an X-valued function is WM-integrable on Σ, does it have to

be M-integrable? If the answer is no, when do WM-integrability on Σ and M-

integrability coincide? Let us mention at least that this is the case for example if X

is a subspace of a Hilbert generated Banach space. What about the case of X being

weakly compactly generated (WCG)? Recall that the Banach space X is (WCG) if

there exists a weakly compact subset of X whose linear span is dense in X .

Problem 3. Suppose that f : S → X is WM-integrable on Σ. Does it follow

that the indefinite Pettis integral of f (that is, the set function E → (Pe)
∫

E
f dµ

(E ∈ Σ)) has a totally bounded range?
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