[1] Bushuyev, I.:
Global uniqueness for inverse parabolic problems with final observation. Inverse Probl. 11 L11--L16 (1995).
MR 1345998 |
Zbl 0840.35120
[3] Duchateau, P.:
An introduction to inverse problems in partial differential equations for physicists, scientists and engineers. A tutorial. Parameter Identification and Inverse Problems in Hydrology, Geology and Ecology ({K}arlsruhe, 1995) Water Sci. Technol. Libr. 23 Kluwer Acad. Publ., Dordrecht (1996).
MR 1434090
[6] Hasanov, A., Duchateau, P., Pektaş, B.:
An adjoint problem approach and coarse-fine mesh method for identification of the diffusion coefficient in a linear parabolic equation. J. Inverse Ill-Posed Probl. 14 435-463 (2006).
DOI 10.1515/156939406778247615 |
MR 2258244 |
Zbl 1135.35095
[9] Kamynin, V. L.:
On the unique solvability of an inverse problem for parabolic equations under a final overdetermination condition. Math. Notes 73 (2003), 202-211. Transl. from the Russian. Mat. Zametki {\it 73} (2003), 217-227.
DOI 10.1023/A:1022107024916 |
MR 1997661 |
Zbl 1033.35138
[11] Prilepko, A. I., Orlovsky, D. G., Vasin, I. A.:
Methods for Solving Inverse Problems in Mathematical Physics. Pure and Applied Mathematics 231 Marcel Dekker, New York (2000).
MR 1748236 |
Zbl 0947.35173
[12] Prilepko, A. I., Tkachenko, D. S.:
An inverse problem for a parabolic equation with final overdetermination. V. G. Romanov Ill-posed and Inverse Problems VSP, Utrecht 345-381 (2002).
MR 2024593 |
Zbl 1059.35173
[13] Zeidler, E.:
Nonlinear Functional Analysis and Its Applications. I: Fixed-Point Theorems. Transl. from the German. Springer, New York (1986).
MR 0816732 |
Zbl 0583.47050