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Abstract. The problem of determining the source term F (x, t) in the linear parabolic
equation ut = (k(x)ux(x, t))x +F (x, t) from the measured data at the final time u(x, T ) =
µ(x) is formulated. It is proved that the Fréchet derivative of the cost functional J(F ) =
‖µT (x) − u(x, T )‖20 can be formulated via the solution of the adjoint parabolic problem.
Lipschitz continuity of the gradient is proved. An existence result for a quasi solution of
the considered inverse problem is proved. A monotone iteration scheme is obtained based
on the gradient method. Convergence rate is proved.
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1. Introduction

We study the inverse source problem associated with the following linear parabolic

problem:

(1.1)











ut = (k(x)ux)x + F (x, t), (x, t) ∈ ΩT := (0, l)× (0, T ],

u(x, 0) = µ0(x), x ∈ (0, l),

u(0, t) = 0, u(l, t) = 0, t ∈ (0, T ].

The inverse problem we investigate consists of determining the source term F (x, t)

from the measured data at the final time

(1.2) u(x, T ) = µ(x).
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The function µ(x) is assumed to be the measured output data and the fuction F will

be defined as the input data. The inverse source problem (1.1)–(1.2) will be referred

as the problem (ISP). In this context for a given F (x, t), the parabolic problem (1.1)

will be referred to as the direct problem.

For the Robin boundary conditions ux(0, t) = 0, −k(l)ux(l, t) = ν[u(l, t) − T0(t)]

the problem of simultaneous determination of the unknown pair 〈F (x, t), T0(t)〉 of
sources has been considered in [4]. Note that the mathematical model (1.1)–(1.2)

arises in various physical and engineering problems, see [1], [2], [4], [5], [7], [9], [11],

[12] and references there in.

In this paper, based on the methodology given in [4], [5], we will apply the adjoint

problem approach given in [3], [6] to (ISP) (1.1)–(1.2). To this aim, the auxiliary

functional

(1.3) J(F ) =

∫ l

0

[u(x, T ;F )− µ(x)]2 dx

is introduced and (ISP) is reformulated as a minimization problem for this functional.

It is shown that the gradient J ′(F ) of the cost functional (1.3) is Lipschitz continuous.

Moreover, an explicit formula for this gradient is obtained via the solution of the

corresponding adjoint problem. Based on these results, monotonicity of the sequence

{J(F (n))} where F (n) is the sequence of iterations obtained by the gradient method,

is proved. The paper is organized as follows. In Section 2, we define a quasi-

solution of the inverse source problem (1.1)–(1.2), based on the weak solution of

the direct problem (1.1). In Section 3, we introduce an adjoint parabolic problem

and prove an explicit relationship between the weak solution of this problem and

the gradient of the cost functional (1.3). Lipschitz continuity of the gradient is

obtained in Section 4. This permits to construct a gradient type iteration process

for the sequence of approximate solutions F (n) ⊂ F of the inverse problem and prove
monotonicity of the sequence of functionals {J(F (n)} ⊂ R+. In Section 5, convexity

of the Fréchet derivative is studied.

2. Quasi-solution of the inverse problem and the gradient

Let us denote by F := {F ∈ H0(ΩT ) : 0 6 m∗ 6 F (x, t) 6 m∗ < ∞ a.e.,

(x, t) ∈ ΩT }, where H0 ≡ L2, the set of admissible unknown sources F . Evidently,

the set F is a closed convex set in H0(ΩT ). We will assume that

(2.1) k(x) ∈ L∞[0, l], 0 < c0 6 k(x) 6 c1, µ(x) ∈ H0[0, l].
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The weak solution of the direct problem (1.1) will be defined as the function u ∈ V 1,0

satisfying the integral identity

(2.2) −
∫∫

ΩT

(uvt − kuxvx) dxdt =

∫∫

ΩT

Fv dxdt ∀ v ∈0 V 1,0(ΩT ),

where V 1,0(ΩT ) is the Banach space of functions (see [11]) with the norm

‖u‖V 1,0 := sup
t∈[0,T ]

|v(x, t)| + ‖vx‖H0(ΩT )

and 0V 1,0(ΩT ) = {v ∈ V 1,0(ΩT ) : v(0) = v(T ) = 0}. Under the above conditions
with respect to the given data, the weak solution u ∈ V 1,0(ΩT ) of the direct prob-

lem (1.1) exists and unique [10].

We denote the solution of the parabolic problem (1.1) by u(x, t;F ) corresponding

to a given F ∈ F . If this function satisfies the additional condition (1.2), then it
must satisfy the nonlinear equation

(2.3) u(x, t;F )|t=T = µ(x), x ∈ (0, l).

However, in practice the measured data µ(x) is usually given with some measurement

errors and the exact fulfilment of the condition (1.2) may not be possible. For

this reason, we define a quasi-solution of the inverse problem as a solution of the

minimization problem for the cost functional J(F ), given by (1.3):

(2.4) J(F∗) = inf
F∈F

J(F ).

Clearly, if J(F∗) = 0, then the quasi-solution F∗ ∈ F is also a strict solution of
the inverse problem (1.1)–(1.2), since F∗ ∈ F satisfies the functional equation (2.3).
Further, in view of the weak solution theory for parabolic problems, one can prove

that if the sequence {F (n)} ⊂ F weakly converges to the function F ∈ F , then
the sequence of traces {u(x, T ;F (n))} of the corresponding solutions of the direct
problem (1.1) converges in the H0-norm to the solution {u(x, T ;F )}, which means
J(F (n)) → J(F ), as n→ ∞. This means that the functional J(F ) is weakly contin-
uous on F , hence due to the Weierstrass existence theorem [13], the set of solutions

F∗ := {F ∈ F : J(F∗) = J∗ = inf
F∈F

J(F )}

of the minimization problem (2.4) is not an empty set.
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3. Fréchet differentiability of the cost functional and its gradient

Let F and F + ∆F ∈ F be source functions. We denote by u(x, t;F ) and
u(x, t, F +∆F ) the corresponding solutions of the problem (1.1). Then ∆u(x, t;F )

is the solution of the parabolic problem

(3.1)











∆ut = (k(x)∆ux)x +∆F (x, t), (x, t) ∈ ΩT ,

∆u(x, 0) = 0, x ∈ (0, l),

∆u(0, t) = 0, ∆u(l, t) = 0, t ∈ (0, T ].

The first variation ∆J(F ) of the cost functional J(F ) is

(3.2) ∆J(F ) := J(F +∆F )− J(F )

= 2

∫ l

0

[u(x, t;F )− µ(x)]∆u(x, T ;F )] dx+

∫ l

0

[∆u(x, T ;F )]2 dx,

where ∆u(x, t;F ) is the solution of (3.1).

Lemma 3.1. Let F , F +∆F be given elements. If u = u(x, t;F ) ∈ V 1,0(ΩT ) is

the corresponding solution of the direct problem (1.1) and ψ(x, t;F ) ∈ V 1,0(ΩT ) is

the solution of the backward parabolic problem

(3.3)











ψt = −(k(x)ψx)x, (x, t) ∈ ΩT ,

ψ(x, T ) = p(x), x ∈ (0, l),

ψ(0, t) = 0, ψ(l, t) = 0, t ∈ (0, T ],

then for all F ∈ F the following integral identity holds:

(3.4)

∫ l

0

p(x)∆u(x, T ;F ) dx =

∫∫

ΩT

∆F (x, t)ψ(x, t;F ) dxdt, F ∈ F ,

with an arbitrary data p(x) ∈ H0(0, l).

P r o o f. We multiply (3.1) by ψ and integrate over ΩT to get

(3.5)

∫∫

ΩT

∆ut(x, t)ψ(x, t) dxdt

=

∫∫

ΩT

(k(x)∆ux(x, t))xψ(x, t) dxdt+

∫∫

ΩT

∆F (x, t)ψ(x, t) dxdt.

Applying integration by parts, the integral on the left hand side of (3.5) becomes

(3.6)

∫∫

ΩT

∆ut(x, t)ψ(x, t) dxdt

= −
∫∫

ΩT

∆u(x, t)ψt(x, t) dxdt+

∫ l

0

∆u(x, T )ψ(x, T ) dx.
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The first integral on the right-hand side of (3.5) is

(3.7)

∫∫

ΩT

(k(x)∆ux(x, t))xψ(x, t) dxdt

=

∫ T

0

[k(l)∆ux(l, t)ψ(l, t)− k(0)∆ux(0, t)ψ(0, t)] dt

−
∫∫

ΩT

k(x)∆ux(x, t)ψx(x, t) dxdt

= −
∫∫

ΩT

k(x)∆ux(x, t)ψx(x, t) dxdt.

The last integral in (3.7) can be calculated as

(3.8) −
∫∫

ΩT

k(x)∆ux(x, t)ψx(x, t) dxdt

= −
∫ T

0

[k(l)ψx(l, t)∆u(l, t)− k(0)ψx(0, t)∆u(0, t)] dt

+

∫∫

ΩT

(k(x)ψx(x, t))x∆u(x, t) dxdt.

Using (3.8), (3.7) and (3.6) in (12), we get (cf. (3.1))

(3.9)

∫ l

0

∆u(x, T )ψ(x, T ) dx

=

∫∫

ΩT

(ψt + (kψx)x)∆u dxdt+

∫∫

ΩT

∆F (x, t)ψ(x, t) dxdt.

Since ψ(x, T ) = p(x), thanks to (3.3), (3.9) we complete the proof. �

Substituting in (3.4) p(x) = 2[u(x, T )− µ(x)], we obtain the integral identity

(3.10) 2

∫ l

0

[u(x, T ;F )− µ(x)]∆u(x, T ;F ) dx

=

∫∫

ΩT

∆F (x, t)ψ(x, t) dxdt ∀F ∈ F .

Corollary 3.1. Let us choose an arbitrary control function p(x) in (3.4) as

p(x) = ∆u(x, T ;F )/‖∆u(x, T ;F )‖H0(0,l) assuming that ∆u(x, T ;F ) = u(x, T ;F1)−
u(x, T ;F2), where ui(x, t) := u(x, t;Fi) is the solution of the direct prolem corre-

sponding to arbitrary Fi ∈ F , i = 1, 2. Then from (3.4) we obtain

‖u(x, T ;F1)− u(x, T ;F2)‖H0(0,l) 6 ‖ψ‖H0(ΩT )‖F1 − F2‖H0(ΩT ).
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The integral equality (3.10) yields that the first variation of the cost functional

J(F ) may be written in the following form:

(3.11) ∆J(F ) =

∫∫

ΩT

∆F (x, t)ψ(x, t) dxdt+

∫ l

0

[∆u(x, T ;F )]2 dx.

Lemma 3.2. If F ∈ F is a given source function and u(x, t;F ) ∈ V 1,0(ΩT ) is the

corresponding solution of the direct problem (1.1), then the inequality

(3.12) ‖∆u(x, T ;F )‖H0(0,l) 6 eT ‖∆F‖H0(ΩT )

holds.

P r o o f. We multiply (3.1) by ∆u(x, t) and integrate over (0, l) to get

(3.13)
1

2

d

dt

∫ l

0

[∆u(x, t;F )]2 dx = k(l)∆ux(l, t)∆u(l, t)

−
∫ l

0

k(∆ux(x, t))
2 dx+

∫ l

0

F (x, t)∆u(x, t;F ) dx

= −ν[∆u(l, t)]2 −
∫ l

0

k(∆ux(x, t))
2 dx+

∫ l

0

F (x, t)∆u(x, t;F ) dx.

If we use the Cauchy inequality for the last term in (3.13) together with the obser-

vation that −ν[∆u(l, t)]2 −
∫ l

0 k(∆ux(x, t))
2 dx is negative, the inequality

(3.14)
d

dt

∫ l

0

[∆u(x, t;F )]2 dx 6

∫ l

0

[∆u(x, t;F )]2 dx+

∫ l

0

[∆F (x, t)]2 dx

follows. Let us substitute

(3.15)

∫ l

0

[∆u(x, t;F )]2 dx = U(t) and

∫ l

0

[∆F (x, t)]2 dx = f(t).

Then (3.14) becomes

U ′(t) 6 U(t) + f(t), t ∈ [0, T ].

Applying Gronwall’s Inequality, we get

U(t) 6 e
∫

t

0
1 ds

[

U(0) +

∫ t

0

f(s) ds

]

∀ t ∈ [0, T ].

Hence

U(t) 6 et
∫ t

0

f(s) ds ∀ t ∈ [0, T ].
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If we substitute t by T , then

U(T ) 6 eT
∫ T

0

f(s) ds.

Therefore, using (3.15), we get

(3.16)

∫ l

0

[∆u(x, T )]2 dx 6 eT
∫∫

ΩT

[∆F (x, t)]2 dxdt,

which gives (3.12). �

By the definition of the Fréchet derivative, from (3.11) and (3.12) we conclude

that the gradient of the cost functional J(F ) is the operator

J ′(F ) = (ψ(x, t;F )),

where ψ is the solution of (3.3).

By using Lemma 3.1 and Lemma 3.2, we prove the following theorem.

Theorem 3.1. Let F ∈ F . If the condition (2.1) holds, then the cost functional J
is Fréchet-differentiable, J(F ) ∈ C1(F). The Fréchet derivative at F ∈ F of the cost
functional J(F ) is defined via the solution of the adjoint problem (3.3) as

(3.17) J ′(F ) = (ψ(x, t;F )).

Corollary 3.2. Let J(F ) ∈ C1(F) and let F∗ ⊂ F be the set of quasi-solutions
of the inverse problem (1.1)–(1.2). Then F∗ ∈ F∗ is a strict solution of the inverse

problem (1.1)–(1.2) if and only if ψ(x, t;F∗) ≡ 0 on ΩT .

4. Lipschitz continuity of the gradient and

the monotone iteration scheme

It is well known that any gradient type iteration algorithm for minimization of

problem (2.4) has the form (see [8])

(4.1) F (n+1) = F (n) − αnJ
′(F (n)), n = 0, 1, 2, . . . ,

where F (0) ∈ F is a given initial iteration. The choice of αn defines different gradient

methods; in many cases, the estimation of this parameter is difficult but in the case

721



of Lipschitz continuity of the gradient J ′(F ) of the cost functional, the iteration

parameter αn can be estimated via the Lipschitz constant C := eT in (3.12) as

(4.2) 0 < δ0 6 αn 6 1/(2C
√
T + δ1),

where δ0, δ1 > 0 are arbitrary parameters.

Now we will prove the Lipschitz continuity of the cost functional (1.3).

Lemma 4.1. Let the conditions of Theorem 3.1. hold. Then the functional J(F )

is of Hölder class C1(F) and

(4.3) ‖J ′(F +∆F )− J ′(F )‖H0(ΩT ) 6 2C
√
T‖∆F‖H0(ΩT ) ∀F, F +∆F ∈ F ,

where

(4.4) ‖J ′(F +∆F )− J ′(F )‖2H0(ΩT ) :=

∫∫

ΩT

[∆ψ(x, t;F )]2 dx.

P r o o f. Let the functions ψ(x, t;F ) and ψ(x, t;F +∆F ) be the solutions to the

problem (3.3) with p(x) = 2[u(x, T ;F ) − µ(x)] and p(x) = 2[u(x, T ;F + ∆F ) −
µ(x)], respectively. Then the function ∆ψ(x, t;F ) := ψ(x, t;F +∆F )− ψ(x, t;F ) ∈
V 1,0(ΩT ) is the solution of the backward parabolic problem

(4.5)











∆ψt = −(k(x)∆ψx)x, (x, t) ∈ ΩT ,

∆ψ(x, T ) = 2∆u(x, T ;F ), x ∈ (0, l),

∆ψ(0, t) = 0,∆ψ(l, t) = 0, t ∈ (0, T ].

For the proof, we multiply (4.5) by ∆ψ(x, t;F ) and integrate over (0, l) to get

(4.6)
1

2

d

dt

∫ l

0

[∆ψ(x, t;F )]2 dx = −k(l)∆ψx(l, t)∆ψ(l, t) + k(0)∆ψx(0, t)∆ψ(0, t)

+

∫ l

0

k(x)[∆ψx(x, t;F )]
2 dx =

∫ l

0

k(x)[∆ψx(x, t;F )]
2 dx.

Let

Φ(t) :=

∫ l

0

[∆ψ(x, t;F )]2 dx.

Since Φ′(t) > 0, Φ(t) is increasing on (0, T ], hence

(4.7) Φ(t) 6 Φ(T ), t ∈ (0, T ].

By (4.7) we have that

∫ l

0

[∆ψ(x, t;F )]2 dx 6

∫ l

0

[∆ψ(x, T ;F )]2 dx = 4

∫ l

0

[∆u(x, T ;F )]2 dx.

By Lemma 3.2, we get the inequality (4.3). �
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We will prove the monotonicity, convergence and convergence properties of the

sequence J(Fn), where Fn ∈ F , n = 0, 1, 2 . . ., are defined by (4.1).

Lemma 4.2. Let F be a closed convex set in a Hilbert space and J(F ) ∈ C1(F).

Then

(4.8) |J(F1)− J(F2)− (J ′(F2), F1 − F2)| 6 C
√
T‖F1 − F2‖2H0(ΩT ), F1, F2 ∈ F .

P r o o f. If we substitute F1 = F + h, F2 = F ∈ F in the formula

J(F + h)− J(F ) =

∫ 1

0

(J ′(F + θh), h) dθ

for the functional J(F ), we get

J(F1)− J(F2) =

∫ 1

0

(J ′(F2 + θ(F1 − F2)), F1 − F2) dθ.

If we use Lemma 4.1 in this equality, we have

|J(F1)− J(F2)− (J ′(F2), F1 − F2)|

=

∣

∣

∣

∣

∫ 1

0

(J ′(F2 + θ(F1 − F2), F1 − F2))− (J ′(F2), F1 − F2)) dθ

∣

∣

∣

∣

6 2C
√
T

∫ 1

0

θ‖F1 − F2‖2H0(ΩT ) dθ = C
√
T‖F1 − F2‖2H0(ΩT ).

This completes the proof. �

Lemma 4.3. Let Fn ∈ F , n = 0, 1, 2, . . . , be iterations defined by (4.1) with

αn = α = const. > 0 ∀n. Then for all n = 0, 1, 2, . . . ,

(4.9) J(F (n))− J(F (n+1)) >
1

4C
√
T
‖J ′(F (n))‖2H0(ΩT ).

P r o o f. In (4.8), we put F1 = F (n+1), F2 = F (n) and use the formula (4.1) for

F (n+1). We get

J(F (n+1))− J(F (n))− (J ′(F (n)),−αJ ′(F (n))) 6 α2C
√
T‖J ′(F (n))‖2H0(ΩT ).

Then we have for α > 0

J(F (n+1))− J(F (n)) > α− α2C
√
T ‖J ′(F (n))‖2H0(ΩT ).

The function q(α) = α−α2C
√
T takes its maximum at α∗ = 1/

(

2C
√
T
)

and q(α∗) =

1/
(

4C
√
T
)

. We substitute these values in the above inequality and obtain (4.9) �
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Notice that the optimal value α∗ = 1/
(

2C
√
T
)

for α is obtained corresponding to

the vaules δ0 = 1/
(

2C
√
T
)

and δ1 = 1/C
√
T .

We denote

J∗ := J(F∗) = lim
n→∞

J(F (n)), F∗ ∈ F ,

as the limit of the sequence {J(F (n))}.

Corollary 4.1. Let F be a closed convex set and J(F ) ∈ C1,1(F). If {F (n)} ⊂ F
is the sequence of iterations defined by

(4.10) F (n+1) = F (n) − α∗J
′(F (n)), α∗ = 1/2, n = 0, 1, 2, . . . ,

then {J(F (n))} is a monotone decreasing convergent sequence and

lim
n→∞

‖J ′(F (n))‖0 = 0.

Moreover,

(4.11) ‖F (n+1) − F (n)‖0 6
1

C
√
T
[J(F (n))− J(F (n+1))], n = 0, 1, 2, . . .

Theorem 4.1. Let condition (2.1) hold. Then for any initial source F (0) ∈ F the
sequence of iterations {F (n)} ⊂ F , given by (4.1), weakly converges in H0(ΩT ) to a

quasisolution F∗ ∈ F∗ of the inverse problem (1.1)–(1.2). Moreover, for the rate of

convergence of the sequence {J(F (n))} the following estimate holds:

(4.12) 0 6 J(F (n))− J(F∗) 6 (4C
√
Td2)n−1, d > 0, n = 0, 1, 2, . . .

P r o o f. It is well known that, if F is a closed convex set in the Hilbert space
H0(ΩT ) and F∗ ⊂ F is a closed convex and bounded set of solutions of the minimiza-
tion problem (2.4), then every minimizing sequence {F (n)} ⊂ F weakly converges to
an element F∗ ∈ F∗. Hence, for the sequence {F (n)} ⊂ F defined by (4.1) we have
F (n) ⇀ F∗ ∈ F∗, as n→ ∞.
To prove the rate of convergence denote

an = J(F (n))− J(F∗), F (n) ∈ F , F∗ ∈ F∗, n = 0, 1, 2, . . .

Since J(F ) is convex, we have

J(F (n))− J(F∗) 6 (J ′(F (n)), F (n) − F∗).
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If we apply the Cauchy inequality to the right-hand side of the above one, we get

an = J(F (n))− J(F∗) 6 ‖J ′(F (n))‖0‖F (n) − F∗‖0 6 d‖J ′(F (n))‖0, F∗ ∈ F ,

where

(4.13) d := sup ‖F (n) − F∗‖, ∀F (n) ∈ F ,
a2n 6 d2‖J ′(F (n))‖20 6 4C

√
Td2(J(F (n))− J(F (n+1)))

= 4C
√
Td2(an − an+1), n = 0, 1, 2, . . .

Thus, we obtained a monotone decreasing sequence {an} ⊂ R+ with

a2n > 0, an − an+1 >
1

4C
√
Td2

a2n.

Now,

(4.14)
1

ak+1
− 1

ak
=
ak − ak+1

ak+1ak
>

(4C
√
Td2)−1

ak+1ak
> (4C

√
Td2)−1.

Taking the sum from 0 to (n− 1)

n−1
∑

k=0

( 1

ak+1
− 1

ak

)

:=
1

an
− 1

a0
> (4C

√
Td2)−1n,

(4.14) yields that an 6 (4C
√
Td2)n−1. This completes the proof. �

5. Convexity of the Fréchet derivative

We will study the convexity of the cost functional J(F ).

Lemma 5.1. Let the conditions of Lemma 4.1 hold. Assume that F , ∆F ∈ F ,
then

(5.1) (J ′(F +∆F )− J ′(F ),∆F )F =

∫∫

ΩT

∆ψ(x, t)∆F (x, t) dxdt

= 2

∫ l

0

[∆u(x, T )]2 dx.

725



P r o o f. Using (3.1), we can write that

(5.2)

∫∫

ΩT

∆ψ(x, t)∆F (x, t) dxdt

=

∫∫

ΩT

(∆ut(x, t)− (k(x)∆ux(x, t))x)∆ψ(x, t) dxdt

=

∫∫

ΩT

∆ut(x, t)∆ψ(x, t) dxdt−
∫∫

ΩT

(k(x)∆ux(x, t))x∆ψ(x, t) dxdt.

The first integral on the second line of (5.2) is

(5.3)

∫∫

ΩT

∆ut(x, t)∆ψ(x, t) dxdt

=

∫ l

0

[∆u(x, T )∆ψ(x, T )−∆u(x, 0)∆ψ(x, 0)] dx

−
∫∫

ΩT

∆u(x, t)∆ψt(x, t) dxdt

= 2

∫ l

0

[∆u(x, T )]2 dx−
∫∫

ΩT

∆u∆ψt dxdt.

The second integral on the second line of (5.2) (recall also (4.5)) is

(5.4) −
∫∫

ΩT

(k(x)∆ux(x, t))x∆ψ(x, t) dxdt

=

∫ T

0

[k(0)∆ux(0, t)∆ψ(0, t)− k(l)∆ux(l, t)∆ψ(l, t)] dt

+

∫∫

ΩT

k(x)∆ux(x, t)∆ψx(x, t) dxdt

=

∫∫

ΩT

k(x)∆ux(x, t)∆ψx(x, t) dxdt.

The last integral in (5.4) is

(5.5)

∫∫

ΩT

k(x)∆ux(x, t)∆ψx(x, t) dxdt

=

∫ T

0

[k(l)∆u(l, t)∆ψx(l, t)− k(0)∆u(0, t)∆ψx(0, t)] dt

−
∫∫

ΩT

∆u(x, t)(k(x)∆ψx(x, t))x dxdt.
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Substituting (5.5) in (5.4), we get

(5.6) −
∫∫

ΩT

(k(x)∆ux(x, t))x∆ψ(x, t) dxdt

= −
∫∫

ΩT

∆u(x, t)(k(x)∆ψx(x, t))x dxdt.

If we use (5.3) and (5.6) in (5.2) (and recall (4.5)) we conclude that

(5.7)

∫∫

ΩT

∆ψ(x, t)∆F (x, t) dxdt

= 2

∫ l

0

[∆u(x, T )]2 dx−
∫∫

ΩT

(k(x)∆ux(x, t))x∆ψ(x, t) dxdt

−
∫∫

ΩT

∆u(x, t)∆ψt(x, t) dxdt

= 2

∫ l

0

[∆u(x, T )]2 dx−
∫∫

ΩT

∆u(∆ψt + (k∆ψx)x) dxdt

= 2

∫ l

0

[∆u(x, T )]2 dx.

This completes the proof. �

Lemma 5.1 proves that the cost functional J(F ) ∈ C1(F) is convex. If the condi-

tion

(5.8)

∫ l

0

[∆u(x, T )]2 dx > 0 ∀F ∈ F

holds, then J(F ) is strictly convex.

Theorem 5.1. If the condition of Lemma 5.1 and the condition (5.8) hold, then

the inverse source problem (1.1)–(1.2) has at most one solution.

A c k n ow l e d g em e n t. We would like to thank Alemdar Hasanoğlu (Hasanov)

for formulation of the problem and helpful suggestions.
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