Previous |  Up |  Next

Article

Keywords:
cancer growth model; AIDS; compact invariant set; omega-limit set; localization; ultimate cancer free dynamics
Summary:
In this paper we examine some features of the global dynamics of the four-dimensional system created by Lou, Ruggeri and Ma in 2007 which describes the behavior of the AIDS-related cancer dynamic model in vivo. We give upper and lower ultimate bounds for concentrations of cell populations and the free HIV-1 involved in this model. We show for this dynamics that there is a positively invariant polytope and we find a few surfaces containing omega-limit sets for positive half trajectories in the positive orthant. Finally, we derive the main result of this work: sufficient conditions of ultimate cancer free behavior.
References:
[1] Boer, R. J. De, Perelson, A. S.: Target cell limited and immune control models of HIV infection: a comparison. J. Theoret. Biol. 190 (1998), 3, 201-214. DOI 10.1006/jtbi.1997.0548
[2] Hraba, T., Doležal, J., Čelikovský, S.: Model-based analysis of CD4+ lymphocyte dynamics in HIV infected individuals. Immunobiology 181 (1990), 108-118. DOI 10.1016/S0171-2985(11)80169-5
[3] Krishchenko, A. P.: Estimation of domains with cycles. Comput. Math. Appl. 34 (1997), 325-332. DOI 10.1016/S0898-1221(97)00130-2 | MR 1478765
[4] Krishchenko, A. P.: Localization of invariant compact sets of dynamical systems. Differ. Equ. 41 (2005), 1669-1676. DOI 10.1007/s10625-006-0003-6 | MR 2243456 | Zbl 1133.34342
[5] Krishchenko, A. P., Starkov, K. E.: Localization of compact invariant sets of the Lorenz system. Phys. Lett. A 353 (2006), 5, 383-388. DOI 10.1016/j.physleta.2005.12.104 | MR 2221803 | Zbl 1181.37044
[6] Levy, J. A.: HIV and the Pathogenesis of AIDS. Springer-Verlag, New York 1999.
[7] Lou, J., Ma, Z., Shao, Y., Han, L.: Modelling the interaction of T-cells, antigen presenting cells, and HIV-1 in vivo. Comput. Math. Appl. 48 (2004), 9-33. DOI 10.1016/j.camwa.2004.04.031 | MR 2086782 | Zbl 1064.92027
[8] Lou, J., Ruggeri, T., Tebaldi, C.: Modelling cancer in HIV-1 infected individuals: Equilibria, cycles and chaotic behavior. Math. Biosci. Eng. 3 (2006), 2, 313-324. DOI 10.3934/mbe.2006.3.313 | MR 2213522
[9] Lou, J., Ruggeri, T., Ma, Z.: Cycles and chaotic behavior in an AIDS-related cancer dynamic model in vivo. J. Biol. Systems 15 (2007), 02, 149-168. DOI 10.1142/S0218339007002131 | Zbl 1279.92040
[10] Perelson, A. S., Kirschner, D. E., DeBoer, R.: Dynamics of HIV infection of CD4+ T cells. Math. Biosci. 114 (1993), 1, 81-125.
[11] Perko, L.: Differential Equations an Dynamical Systems. Second edition. Springer-Verlag, New York, Berlin, Heidelberg 1996. MR 1418638
[12] Starkov, K. E.: Compact invariant sets of the Bianchi VIII and Bianchi IX Hamiltonian systems. Phys. Lett. A 375 (2011), 3184-3187. DOI 10.1016/j.physleta.2011.06.064 | MR 2824198 | Zbl 1252.83129
[13] Starkov, K. E., Coria, L. N.: Global dynamics of the Kirschner-Panetta model for the tumor immunotherapy. Nonlinear Anal. Real World Appl. 14 (2013), 1425-1433. MR 3004510
[14] Starkov, K. E., Pogromsky, A. Y.: On the global dynamics of the Owen-Sherratt model describing the tumor-macrophage interactions. Int. J. Bifur. Chaos Appl. Sci. Engrg. 23 (2013). DOI 10.1142/S021812741350020X | MR 3041470 | Zbl 1270.34137
[15] Starkov, K. E., Gamboa, D.: Localization of compact invariant sets and global stability in analysis of one tumor growth model. Math. Methods Appl. Sci. (2013). DOI 10.1002/mma.3023
[16] Starkov, K. E., Krishchenko, A. P.: On the global dynamics of one cancer tumour growth model. Commun. Nonlin. Sci. Numer. Simul. 19 (2014), 1486-1495. DOI 10.1016/j.cnsns.2013.09.023 | MR 3128676
[17] Starkov, K. E., Villegas, A.: On some dynamical properties of one seven- dimensional cancer model with immunotherapy. Int. J. Bifur. Chaos Appl. Sci. Engrg. 24 (2014). DOI 10.1142/S0218127414500205 | MR 3187160
[18] Valle, P. A., Coria, L. N., Starkov, K. E.: Estudio de la dinamica global para un modelo de evasion-inmune de un tumor cancerigeno. Comp. y Sistemas, accepted.
[19] Wang, L., Li, M. Y.: Mathematical analysis of the global dynamics of a model for HIV infection of CD4+ T cells. Math. Biosci. 200 (2006), 44-57. DOI 10.1016/j.mbs.2005.12.026 | MR 2211927 | Zbl 1086.92035
[20] Wen, Q., Lou, J.: The global dynamics of a model about HIV-1 infection in vivo. Ric. Mat. 58 (2009), 1, 77-90. DOI 10.1007/s11587-009-0048-y | MR 2507794 | Zbl 1184.34058
Partner of
EuDML logo