[1] Agrachev, A., Sachkov, Y.:
Control Theory from the Geometric Viewpoint. In: Encyclopaedia of Mathematical Sciences 87 (2004), Springer-Verlag.
MR 2062547 |
Zbl 1062.93001
[2] Camarinha, M.: The Geometry of Cubic Polynomials on Riemannian Manifolds. PhD. Thesis, Departamento de Matemática, Universidade de Coimbra 1996.
[4] Crouch, P, Leite, F. S.: Geometry and the dynamic interpolation problem. In: Proc. American Control Conference Boston 1991, pp. 1131-1137.
[7] Giambó, R., Giannoni, F., Piccione, P.:
Fitting smooth paths to spherical data. IMA J. Math. Control Inform. 19 (2002), 445-460.
MR 1949013
[8] Hüper, K., Kleinsteuber, M., Leite, F. S.:
Rolling Stiefel manifolds. Int. J. Systems Sci. 39 (2008), 8, 881-887.
MR 2437853 |
Zbl 1168.53007
[9] Hüper, K., Krakowski, K. A., Leite, F. S.:
Rolling Maps in a Riemannian Framework. In: Mathematical Papers in Honour of Fátima Silva Leite, Textos de Matemática 43, Department of Mathematics, University of Coimbra 2011, pp. 15-30.
MR 2894254 |
Zbl 1254.53018
[10] Hüper, K., Leite, F. S.: Smooth interpolating curves with applications to path planning. In: 10th IEEE Mediterranean Conference on Control and Automation (MED 2002), Lisbon 2002.
[11] Hüper, K., Leite, F. S.:
On the geometry of rolling and interpolation curves on $S^n$, $SO_n$ and Graßmann manifolds. J. Dyn. Control Syst. 13 (2007), 4, 467-502.
DOI 10.1007/s10883-007-9027-3 |
MR 2350231
[13] Jurdjevic, V., Zimmerman, J.:
Rolling problems on spaces of constant curvature. In: Lagrangian and Hamiltonian methods for nonlinear control 2006, Proc. 3rd IFAC Workshop 2006 (F. Bullo and K. Fujimoto, eds.), Nagoya 2007, Lect. Notes Control Inform. Sciences, Springer, pp. 221-231.
MR 2376942 |
Zbl 1136.49028
[14] Krakowski, K., Leite, F. S.: Smooth interpolation on ellipsoids via rolling motions. In: PhysCon 2013, San Luis Potosí, Mexico 2013.
[15] Krakowski, K. A., Leite, F. S.: Why controllability of rolling may fail: a few illustrative examples. In: Pré-Publicações do Departamento de Matemática, No. 12-26, University of Coimbra 2012, pp. 1-30.
[16] Lee, J. M.:
Riemannian Manifolds: An Introduction to Curvature. In? Graduate Texts in Mathematics No. 176, Springer-Verlag, New York 1997.
MR 1468735 |
Zbl 0905.53001
[20] Park, F., Ravani, B.: Optimal control of the sphere ${S^n}$ rolling on ${E^n}$. ASME J. Mech. Design 117 (1995), 36-40.
[22] Sharpe, R. W.:
Differential Geometry: Cartan's Generalization of Klein's Erlangen Program. In: Graduate Texts in Mathematics, No. 166. Springer-Verlag, New York 1997.
MR 1453120 |
Zbl 0876.53001