Previous |  Up |  Next

Article

Keywords:
algebra group; quasigroup; loop; supercharacter; fusion scheme
Summary:
A natural loop structure is defined on the set $U_4$ of unimodular upper-triangular matrices over a given field. Inner mappings of the loop are computed. It is shown that the loop is non-associative and nilpotent, of class 3. A detailed listing of the loop conjugacy classes is presented. In particular, one of the loop conjugacy classes is shown to be properly contained in a superclass of the corresponding algebra group.
References:
[1] Aguiar M. et al.: Supercharacters, symmetric functions in non-commuting variables, and related Hopf algebras. Adv. Math. 229 (2012), 2310–2337. DOI 10.1016/j.aim.2011.12.024 | MR 2880223
[2] André C.A.M.: Basic characters of the unitriangular group. Algebra 175 (1995), 287–319. DOI 10.1006/jabr.1995.1187 | MR 1338979 | Zbl 1064.20005
[3] Bruck R.H.: Contributions to the theory of loops. Trans. Amer. Math. Soc. 60 (1946), 245–354. DOI 10.1090/S0002-9947-1946-0017288-3 | MR 0017288 | Zbl 0061.02201
[4] Bruck R.H.: A Survey of Binary Systems. Springer, Berlin, 1958. MR 0093552 | Zbl 0141.01401
[5] Diaconis P., Isaacs I.M.: Supercharacters and superclasses for algebra groups. Trans. Amer. Math. Soc. 360 (2008), 2359–2392. DOI 10.1090/S0002-9947-07-04365-6 | MR 2373317 | Zbl 1137.20008
[6] Johnson K.W., Smith J.D.H.: Characters of finite quasigroups III: quotients and fusion. Eur. J. Comb. 10 (1989), 47–56. DOI 10.1016/S0195-6698(89)80032-0 | MR 0977179 | Zbl 0667.20053
[7] Smith J.D.H.: An Introduction to Quasigroups and Their Representations. Chapman and Hall/CRC, Boca Raton, FL, 2007. MR 2268350 | Zbl 1122.20035
[8] Smith J.D.H., Romanowska A.B.: Post-Modern Algebra. Wiley, New York, NY, 1999. MR 1673047 | Zbl 0946.00001
Partner of
EuDML logo