Previous |  Up |  Next

Article

Keywords:
automorphic loop; semidirect product; middle nucleus; cyclic group
Summary:
We analyze semidirect extensions of middle nuclei of commutative automorphic loops. We find a less complicated conditions for the semidirect construction when the middle nucleus is an odd order abelian group. We then use the description to study extensions of orders $3$ and $5$.
References:
[1] Bruck R.H., Paige L.J.: Loops whose inner mappings are automorphisms. Ann. of Math. (2) 63 (1956), 308–323. DOI 10.2307/1969612 | MR 0076779 | Zbl 0074.01701
[2] Hora J., Jedlička P.: Nuclear semidirect product of commutative automorphic loops. J. Algebra Appl. 13 (2014), no. 1. DOI 10.1142/S0219498813500771 | MR 3096858 | Zbl 1292.20072
[3] Jedlička P., Kinyon M., Vojtěchovský P.: Structure of commutative automorphic loops. Trans. Amer. Math. Soc. 363 (2011), no. 1, 365–384. DOI 10.1090/S0002-9947-2010-05088-3 | MR 2719686 | Zbl 1215.20060
[4] Jedlička P., Kinyon M., Vojtěchovský P.: Constructions of commutative automorphic loops. Comm. Algebra 38 (2010), no. 9, 3243–3267. DOI 10.1080/00927870903200877 | MR 2724218 | Zbl 1209.20069
[5] Jedlička P., Simon D.: On commutative A-loops of order $pq$. to appear.
[6] Pflugfelder H.O.: Quasigroups and Loops: Introduction. Heldermann, Berlin, 1990. MR 1125767 | Zbl 0715.20043
Partner of
EuDML logo