[2] Baek, J.-I., Park, S.-T.:
Convergence of weighted sums for arrays of negatively dependent random variables and its applications. RETRACTED. J. Theor. Probab. 23 362-377 (2010), retraction ibid. 26 899-900 (2013).
DOI 10.1007/s10959-008-0198-y |
MR 2644864
[4] Chen, P., Hu, T.-C., Liu, X., Volodin, A.:
On complete convergence for arrays of row-wise negatively associated random variables. Theory Probab. Appl. 52 323-328 (2008), and Teor. Veroyatn. Primen. 52 393-397 (2007).
DOI 10.1137/S0040585X97983079 |
MR 2742512
[6] Dobrushin, R. L.:
Central limit theorem for non-stationary Markov chains. I, II. Teor. Veroyatn. Primen. 1 72-89 (1956), Berichtigung. Ibid. 3 477 (1958).
MR 0086436
[8] Guo, M. L.:
Complete moment convergence of weighted sums for arrays of rowwise $\varphi$-mixing random variables. Int. J. Math. Math. Sci. 2012 Article ID 730962, 13 pp (2012).
MR 2974698 |
Zbl 1253.60050
[10] Hu, T.-C., Cabrera, M. Ordóñez, Sung, S. H., Volodin, A.:
Complete convergence for arrays of rowwise independent random variables. Commun. Korean Math. Soc. 18 375-383 (2003).
DOI 10.4134/CKMS.2003.18.2.375 |
MR 1986755
[16] Peligrad, M., Gut, A.:
Almost-sure results for a class of dependent random variables. J. Theor. Probab. 12 87-104 (1999).
MR 1674972 |
Zbl 0928.60025
[17] Qiu, D. H., Hu, T.-C., Cabrera, M. O., Volodin, A.:
Complete convergence for weighted sums of arrays of Banach-space-valued random elements. Lith. Math. J. 52 316-325 (2012).
DOI 10.1007/s10986-012-9175-3 |
MR 3020945
[18] Shao, Q. M.:
A moment inequality and its applications. Acta Math. Sin. 31 736-747 Chinese (1988).
MR 1000416 |
Zbl 0698.60025
[19] Shen, A. T., Wang, X. H., Ling, J. M.:
On complete convergence for non-stationary $\varphi$-mixing random variables. Commun. Stat. Theory Methods DOI:10.1080/03610926. 2012.725501.
DOI 10.1080/03610926
[22] Sung, S. H.:
Moment inequalities and complete moment convergence. J. Inequal. Appl. 2009 Article ID 271265, 14 pp (2009).
MR 2551753 |
Zbl 1180.60019
[23] Sung, S. H.:
Complete convergence for weighted sums of $\rho^{\ast} $-mixing random variables. Discrete Dyn. Nat. Soc. 2010 Article ID 630608, 13 pp (2010).
MR 2611046 |
Zbl 1193.60045
[24] Sung, S. H.:
On complete convergence for weighted sums of arrays of dependent random variables. Abstr. Appl. Anal. 2011 Article ID 630583, 11 pp (2011).
MR 2861513 |
Zbl 1231.60025
[26] Wang, X. J., Hu, S. H.:
Some Baum-Katz type results for ${\varphi}$-mixing random variables with different distributions. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 106 321-331 (2012).
DOI 10.1007/s13398-011-0056-0 |
MR 2978917 |
Zbl 1266.60056
[27] Wang, X. J., Hu, S. H., Yang, W. Z., Shen, Y.:
On complete convergence for weighted sums of $\varphi $-mixing random variables. J. Inequal. Appl. 2010 Article ID 372390, 13 pp (2010).
MR 2671020 |
Zbl 1208.60031
[28] Wang, X. J., Hu, S. H., Yang, W. Z., Wang, X. H.:
Convergence rates in the strong law of large numbers for martingale difference sequences. Abstr. Appl. Anal. 2012 Article ID 572493, 13 pp (2012).
MR 2955034 |
Zbl 1253.60045
[29] Wang, X. J., Hu, S. H., Yang, W. Z., Wang, X. H.:
On complete convergence of weighted sums for arrays of rowwise asymptotically almost negatively associated random variables. Abstr. Appl. Anal. 2012 Article ID 315138, 15 pp (2012).
MR 2947673 |
Zbl 1253.60044
[30] Wu, Q. Y.: Probability Limit Theory for Mixed Sequence. China Science Press, Beijing (2006), Chinese.
[31] Wu, Q. Y.:
A complete convergence theorem for weighted sums of arrays of rowwise negatively dependent random variables. J. Inequal. Appl. 2012 Article ID 50, 10 pp. (electronic only) (2012).
MR 2928247 |
Zbl 1293.62053
[32] Zhang, L. X., Wen, J. W.:
The strong law of large numbers for $B$-valued random fields. Chin. Ann. Math., Ser. A 22 205-216 Chinese (2001).
MR 1837525 |
Zbl 0983.60016
[33] Zhou, X. C., Lin, J. G.:
On complete convergence for arrays of rowwise $\rho $-mixing random variables and its applications. J. Inequal. Appl. 2010 Article ID 769201, 12 pp (2010).
MR 2738676 |
Zbl 1208.60032