Previous |  Up |  Next

Article

Keywords:
2-step nilpotent Lie groups; free nilpotent groups; left-invariant Lorentzian metrics; Ricci-flatness
Summary:
The purpose of this paper is to investigate Ricci-flatness of left-invariant Lorentzian metrics on 2-step nilpotent Lie groups. We first show that if $\left\langle \, ,\right\rangle $ is a Ricci-flat left-invariant Lorentzian metric on a 2-step nilpotent Lie group $N$, then the restriction of $\left\langle \, ,\right\rangle $ to the center of the Lie algebra of $N$ is degenerate. We then characterize the 2-step nilpotent Lie groups which can be endowed with a Ricci-flat left-invariant Lorentzian metric, and we deduce from this that a Heisenberg Lie group $H_{2n+1}$ can be endowed with Ricci-flat left-invariant Lorentzian metric if and only if $n=1$. We also show that the free 2-step nilpotent Lie group on $m$ generators $N_{m,2}$ admits a Ricci-flat left-invariant Lorentzian metric if and only if $m=2$ or $m=3$, and we determine all Ricci-flat left-invariant Lorentzian metrics on the free $2$-step nilpotent Lie group on $3$ generators $N_{3,2}$.
References:
[1] Alekseevskii, D., Kimelfeld, B.: Structure of homogeneous Riemannian spaces with zero Ricci curvature. Funct. Anal. Appl. 9 (1975), 97–102. DOI 10.1007/BF01075445 | MR 0402650
[2] Asfour, M.: Curvatures of left-invariant Lorentzian metrics on solvable Lie groups. Ph.D. thesis, in preparation.
[3] Aubert, A., Medina, A.: Groupes de Lie pseudo-Riemanniens plats. Tôhoku Math. J. (2) 55 (2003), no. 4, 487–506. DOI 10.2748/tmj/1113247126 | MR 2017221 | Zbl 1058.53055
[4] Bérard-Bergery, L.: Sur la courbure des métriques riemanniennes invariantes des groupes de Lie et des espaces homogènes. Ann. Sci. École Norm. Sup. (4) 11 (1978), 543–576. MR 0533067 | Zbl 0426.53038
[5] Boucetta, M.: Ricci flat left invariant pseudo-Riemannian metrics on 2-step nilpotent Lie groups. arXiv:0910.2563v1[math.DG], 2009.
[6] Boucetta, M., Lebzioui, H.: Nonunimodular Lorentzian flat Lie algebras. arXiv:1401.0950v1 [math.DG], 2014.
[7] Cordero, L., Parker, P.: Pseudo-Riemannian 2-step nilpotent Lie group. arXiv:math/9905188 [math.DG], 1999.
[8] Eberlein, P.: Geometry of 2-step nilpotent groups with a left-invariant metric. Ann. Sci. École Norm. Sup. (4) 27 (1994), 611–660. MR 1296558 | Zbl 0820.53047
[9] Eberlein, P.: The moduli space of 2-step nilpotent Lie algebras of type $(p,q)$. Contemp. Math. 332 (2003), 37–72. DOI 10.1090/conm/332/05929 | MR 2016090 | Zbl 1045.17003
[10] Eberlein, P.: Geometry of 2-step nilpotent Lie groups. Modern Dynamical Systems, Cambridge University Press, 2004, pp. 67–101. MR 2090766 | Zbl 1154.22009
[11] Grunewald, F., Margulis, G.: Transitive and quasitransitive actions of affine groups preserving a generalized Lorentz structure. J. Geom. Phys. (1988), 493–531. DOI 10.1016/0393-0440(88)90017-4 | MR 1075720 | Zbl 0706.57022
[12] Guediri, M.: Sur la completude des pseudo-metriques invariantes a gauche sur les groupes de Lie nilpotents. Rend. Sem. Mat. Univ. Politec. Torino 52 (1994), 371–376. MR 1345607 | Zbl 0838.53035
[13] Guediri, M.: Lorentz geometry of 2-step nilpotent Lie groups. Geom. Dedicata 100 (2003), 11–51. DOI 10.1023/A:1025832108196 | MR 2011112 | Zbl 1037.53046
[14] Guediri, M.: On the nonexistence of closed timelike geodesics in flat lorentz 2-step nilmanifolds. Trans. Amer. Math. Soc. 355 (2003), 775–786. DOI 10.1090/S0002-9947-02-03114-8 | MR 1932725 | Zbl 1028.53045
[15] Guediri, M.: Compact flat spacetimes. Differential Geom. Appl. 21 (2004), 283–295. DOI 10.1016/j.difgeo.2004.05.003 | MR 2091365 | Zbl 1085.53062
[16] Kaplan, A.: Fundamental solutions for a class of hypoelliptic PDE generated by composition of quadratic forms. Trans. Amer. Math. Soc. 258 (1980), 147–153. DOI 10.1090/S0002-9947-1980-0554324-X | MR 0554324 | Zbl 0393.35015
[17] Kaplan, A.: Riemannian nilmanifolds attached to Clifford modules. Geom. Dedicata 11 (1981), 127–136. DOI 10.1007/BF00147615 | MR 0621376 | Zbl 0495.53046
[18] Kaplan, A.: On the geometry of groups of Heisenberg type. Bull. Lond. Math. Soc. 15 (1983), 35–42. DOI 10.1112/blms/15.1.35 | MR 0686346 | Zbl 0521.53048
[19] Milnor, J.: Curvatures of left invariant metrics on Lie groups. Adv. Math. 21 (1976), 293–329. DOI 10.1016/S0001-8708(76)80002-3 | MR 0425012 | Zbl 0341.53030
[20] Nomizu, K.: Left-invariant Lorentz metrics on Lie groups. Osaka J. Math. 16 (1979), 143–150. MR 0527022 | Zbl 0397.53047
[21] O’Neill, B.: Semi-Riemannian geometry with applications to relativity. Academic Press, New York, 1983. MR 0719023
[22] Ovando, G.: Free nilpotent Lie algebras admitting ad-invariant metrics. arXiv:1104.4773v2 [math.RA], 2011.
Partner of
EuDML logo