Previous |  Up |  Next

Article

Keywords:
projectable vector field; Weil bundle; product preserving gauge bundle functor; lift
Summary:
For a product preserving gauge bundle functor on vector bundles, we present some lifts of smooth functions that are constant or linear on fibers, and some lifts of projectable vector fields that are vector bundle morphisms.
References:
[1] Cordero, L.A., Dobson, C.T.J., De León, M.: Differential geometry of frame bundles. Kluwer Academic Publishers, 1989. MR 0980716
[2] Gancarzewicz, J., Mikulski, W.M., Pogoda, Z.: Lifts of some tensor fields and connections to product preserving functors. Nagoya Math. J. 135 (1994), 1–14. MR 1295815 | Zbl 0813.53010
[3] Kolář, I.: Covariant approach to natural transformations of Weil bundles. CMUC 27 (1986), 723–729. MR 0874666
[4] Kolář, I.: On the natural operators on vector fields. Ann. Global Anal. Geom. 6 (1988), 119–117. DOI 10.1007/BF00133034 | MR 0982760 | Zbl 0678.58003
[5] Kolář, I., Modugno, M.: Torsions of connections on some natural bundles. Differential Geom. Appl. 2 (1992), 1–16. DOI 10.1016/0926-2245(92)90006-9 | MR 1244453 | Zbl 0783.53021
[6] Kolář, I., Slovák, J., Michor, P.W.: Natural operations in differential geometry. Springer-Verlag Berlin–Heidelberg, 1993. MR 1202431 | Zbl 0782.53013
[7] Mikulski, W.M.: Product preserving gauge bundle functors on vector bundles. Colloq. Math. 90 (2001), no. 2, 277–285. DOI 10.4064/cm90-2-7 | MR 1876848 | Zbl 0988.58001
[8] Ntyam, A., Mba, A.: On natural vector bundle morphisms $T^{A}\circ \otimes _{s}^{q}\rightarrow \otimes _{s}^{q}\circ T^{A}$ over $\operatorname{id}_{T^{A}}$. Ann. Polon. Math. 96 (2009), no. 3, 295–301. MR 2534175
[9] Ntyam, A., Wouafo, K.J.: New versions of curvature and torsion formulas for the complete lifting of a linear connection to Weil bundles. Ann. Polon. Math. 82 (2003), no. 3, 133–140. DOI 10.4064/ap82-3-4 | MR 2040808 | Zbl 1081.58002
Partner of
EuDML logo