[2] Blair, J. R. S., Peyton, B.W.:
An Introduction to Chordal Graphs and Clique Trees. Technical Report ORNL/TM-12203, 1992.
MR 1320296 |
Zbl 0803.68081
[4] Dawid, A. P.:
Applications of a general propagation algorithm for probabilistic expert systems. Statist. Comput. 2 (1992), 25-36.
DOI 10.1007/BF01890546
[5] Deming, W. E., Stephan, F. F.:
On least squares adjustment of a sampled frequency table when the expected marginal totals are known. Ann. Math. Stat. 11 (1940), 427-444.
DOI 10.1214/aoms/1177731829 |
MR 0003527
[6] Hara, H., Takemura, A.:
Boundary cliques, clique trees and perfect sequences of maximaal cliques of a chordal graph. arXiv:cs/0607055v1 [cs.DM], 11 July 2006, pp. 1-24.
MR 2266415
[7] Jiroušek, R.: Composition of probability measures on finite spaces. In: Proc. XIII International Conf. on Uncertainty in Artificial Intelligence (D. Geiger and P. P. Shenoy, eds.), Morgan Kaufmann, San Francisco 1997, pp. 274-281.
[9] Jiroušek, R.: Detection of independence relations from persegrams. In: Proc. VI International Conf. on Information Processing and Management of Uncertainty in Knowledge-Based Systems, Annecy 2002, Vol. C, pp. 1261-1267.
[10] Jiroušek, R.: Persegrams of compositional models revisited: conditional independence. In: Proc. XII International Conf. on Information Processing and Management of Uncertainty in Knowledge-Based Systems (L. Magdalena, M. Ojeda-Aciego and J. L. Verdegay, eds.), Malaga 2008, pp. 915-922.
[14] Jiroušek, R., Vejnarová, J.:
General framework for multidimensional models. Internat. J. Approx. Reas. 18 (2003), 107-127.
Zbl 1029.68131
[15] Jiroušek, R., Vejnarová., J., Daniels, M.: Composition models of belief functions. In: Proc. V Symp. on Imprecise Probabilities and Their Applications (G. De Cooman, J. Vejnarová, and M. Zaffalon, eds.), Action M Agency, Prague 2007, pp. 243-252.
[18] Lauritzen, S. L.:
Graphical Models. Oxford University Press, Oxford 1996.
MR 1419991
[19] Lenz, H.-J., Talheim, B.:
A formal framework of aggregation for the OLAP-OLTP model. J. of Universal Computer Science 15 (2009), 273-303.
MR 2497221
[20] Malvestuto, F. M.:
Tree and local computations in a cross-entropy minimization problem with marginal constraints. Kybernetika 46 (2010), 621-654.
MR 2722092 |
Zbl 1204.93113
[21] Malvestuto, F. M.:
The sum-product algorithm: algebraic independence and computational aspects. Kybernetika 49 (2013), 4-22.
MR 3088472
[22] Malvestuto, F. M.: A join-like operator to combine data cubes, and answer queries from multiple data cubes. Unpublished manuscript, 2013.
[23] Malvestuto, F. M., Pourabbas, E.: Local computation of answers to table queries on summary databases. In: Proc. XVII International Conference on Scientific and Statistical Database Management, Santa Barbara 2005, pp. 263-270.
[25] Pearl, J.:
Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann Pub., San Mateo 1988.
MR 0965765 |
Zbl 0746.68089
[26] Pourabbas, E., Shoshani, A.:
Efficient estimation of joint queries from multiple OLAP databases. ACM Trans. Database Systems 32 (2007), 1, Article No. 2.
DOI 10.1145/1206049.1206051
[27] Pourabbas, E., Shoshani, A.:
Improving estimation accuracy of aggregate queries on data cubes. Data and Knowledge Engrg. 69 (2010), 50-72.
DOI 10.1016/j.datak.2009.08.010
[28] Shenoy, P. P., Shafer, G.:
Axioms for probability and belief-function propagation. In: Uncertainty in Artificial Intelligence (R. D. Shachter, T. Levitt, J. F. Lemmer, and L. N. Kanel, eds.), North-Holland 1990, Vol. 4.
MR 1166831
[29] Tarjan, R. E., Yannakakis, M.:
Simple linear-time algorithms to test chordality of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs. SIAM J. Comput. 13 (1984), 566-579.
DOI 10.1137/0213035 |
MR 0749707 |
Zbl 0562.68055
[30] Verma, V., Gagliardi, F., Ferretti, C.: On Pooling Data and Measures. Working Paper No. 84 University of Siena, 2009.
[31] Vomlel, J.:
Integrating inconsistent data in a probabilistic model. J. Appl. Non-Classical Logics 49 (2003), 4-22.
Zbl 1185.68699