Previous |  Up |  Next

Article

Keywords:
linear estimator; invariant estimator; admissibility; one-way/two-way ANOVA
Summary:
Let $\mathbf{y}$ be observation vector in the usual linear model with expectation $\mathbf{A\beta }$ and covariance matrix known up to a multiplicative scalar, possibly singular. A linear statistic $\mathbf{a}^{T} \mathbf{y}$ is called invariant estimator for a parametric function $\phi = \mathbf{c}^{T}\mathbf{\beta }$ if its MSE depends on $\mathbf{\beta }$ only through $\phi $. It is shown that $ \mathbf{a}^{T}\mathbf{y}$ is admissible invariant for $\phi $, if and only if, it is a BLUE of $\phi ,$ in the case when $\phi $ is estimable with zero variance, and it is of the form $k\widehat{\phi }$, where $k\in \left\langle 0,1\right\rangle $ and $ \widehat{\phi }$ is an arbitrary BLUE, otherwise. This result is used in the one- and two-way ANOVA models. Our paper is self-contained and accessible, also for non-specialists.
References:
[1] Baksalary, J. K., Markiewicz, A.: Admissible linear estimators in the general Gauss-Markov model. J. Statist. Plann. Inference 19 (1988), 349-359. DOI 10.1016/0378-3758(88)90042-0 | MR 0955399 | Zbl 0656.62076
[2] Baksalary, J. K., Markiewicz, A.: A matrix inequality and admissibility of linear estimators with respect to the mean squared error criterion. Linear Algebra Appl. 112 (1989), 9-18. MR 0976326
[3] Baksalary, J. K., Markiewicz, A.: Admissible linear estimators of an arbitrary vector parametric function in the general Gauss-Markov model. J. Statist. Plann. Inference 26 (1990), 161-173. DOI 10.1016/0378-3758(90)90124-D | MR 1079260
[4] Cohen, A.: Estimates of linear combinations of the parameters of the mean vector of a multivariate distribution. Ann. Math. Statist. 36 (1965), 78-87. DOI 10.1214/aoms/1177700272 | MR 0172399
[5] Cohen, A.: All admissible estimates of the mean vector. Ann. Math. Statist. 37 (1966), 458-463. DOI 10.1214/aoms/1177699528 | MR 0189164
[6] Groß, J.: More on concavity of a matrix function. SIAM J. Matrix Anal. Appl. 19 (1998), 365-368. DOI 10.1137/S0895479896311244 | MR 1614042 | Zbl 0912.15031
[7] Groß, J.: Löwner partial ordering and space preordering of Hermitian non-negative definite matrices. Linear Algebra Appl. 326 (2001), 215-223. MR 1815961 | Zbl 0979.15019
[8] Groß, J., Markiewicz, A.: Characterization of admissible linear estimators in the linear model. Linear Algebra Appl. 388 (2004), 239-248. MR 2077862
[9] Halmos, P. R.: Finite-Dimensional Vector Spaces. Second edition. Springer-Verlag, New York 1993. MR 0409503
[10] Ip, W., Wong, H., Liu, J.: Sufficient and admissible estimators in general multivariate linear model. J. Statist. Plann. Inference 135 (2005), 371-383. DOI 10.1016/j.jspi.2004.05.005 | MR 2200475 | Zbl 1074.62037
[11] Klonecki, W.: Linear estimators of mean vector in linear models: Problem of admissibility. Probab. Math. Statist. 2 (1982), 167-178. MR 0711891
[12] Klonecki, W., Zontek, S.: On the structure of admissible linear estimators. J. Multivariate Anal. 24 (1988), 11-30. DOI 10.1016/0047-259X(88)90098-X | MR 0925126 | Zbl 0664.62008
[13] Kruskal, W.: When are Gauss-Markov and least squares estimators identical? A coordinate-free approach. Ann. Math. Statist. 39 (1968), 70-75. DOI 10.1214/aoms/1177698505 | MR 0222998 | Zbl 0162.21902
[14] LaMotte, L. R.: Admissibility in linear models. Ann. Statist. 10 (1982), 245-255. DOI 10.1214/aos/1176345707 | MR 0642736
[15] LaMotte, L. R.: On limits of uniquely best linear estimators. Metrika 45 (1997), 197-211. DOI 10.1007/BF02717103 | MR 1452063
[16] Lehmann, E. L., Scheffé, H.: Completeness, similar regions, and unbiased estimation - Part 1. Sankhyā A, 10 (1950), 305-340. MR 0039201
[17] Olsen, A., Seely, J., Birkes, D.: Invariant quadratic unbiased estimation for two variance components. Ann. Statist. 4 (1976), 823-1051. DOI 10.1214/aos/1176343586 | MR 0418345 | Zbl 0344.62060
[18] Rao, C. R.: Linear Statistical Inference. Wiley, New York 1973. MR 0346957 | Zbl 0256.62002
[19] Rao, C. R.: Estimation of parameters in a linear model. Ann. Statist. 4 (1976), 1023-1037. Correction Ann. Statist. 7 (1979), 696-696. DOI 10.1214/aos/1176343639 | MR 0420979 | Zbl 0421.62047
[20] Scheffé, H.: The Analysis of Variance. Wiley, New York 1959. MR 0116429 | Zbl 0998.62500
[21] Stępniak, C.: On admissible estimators in a linear model. Biom. J. 26 (1984), 815-816. DOI 10.1002/bimj.4710260725 | MR 0775200 | Zbl 0565.62042
[22] Stępniak, C.: Ordering of nonnegative definite matrices with application to comparison of linear models. Linear Algebra Appl. 70 (1985), 67-71. DOI 10.1016/0024-3795(85)90043-6 | MR 0808532 | Zbl 0578.15019
[23] Stępniak, C.: A complete class for linear estimation in a general linear model. Ann. Inst. Statist. Math. A 39 (1987), 563-573. DOI 10.1007/BF02491490 | MR 0930530 | Zbl 0691.62010
[24] Stępniak, C.: Admissible linear estimators in mixed linear models. J. Multivariate Anal. 31 (1989), 90-106. DOI 10.1016/0047-259X(89)90052-3 | MR 1022355 | Zbl 0709.62055
[25] Stępniak, C.: Perfect linear models and perfect parametric functions. J. Statist. Plann. Inference 139 (2009), 151-163. DOI 10.1016/j.jspi.2008.04.001 | MR 2473994 | Zbl 1149.62319
[26] Stępniak, C.: From equivalent linear equations to Gauss-Markov theorem. J. Inequal. Appl. (2010), ID 259672, 5 pages. MR 2671027 | Zbl 1204.62120
[27] Stępniak, C.: On a problem with singularity in comparison of linear experiments. J. Statist. Plann. Inference 141 (2011), 2489-2493. DOI 10.1016/j.jspi.2011.01.022 | MR 2775225 | Zbl 1214.62076
[28] Synówka-Bejenka, E., Zontek, S.: A characterization of admissible linear estimators of fixed and random effects in linear models. Metrika 68 (2008), 157-172. DOI 10.1007/s00184-007-0149-0 | MR 2434311
[29] Zontek, S.: Admissibility of limits of the unique locally best estimators with application to variance components models. Probab. Math. Statist. 9 (1988), 29-44. MR 0985523
[30] Zyskind, G.: On canonical forms, non-negative covariance matrices and best and simple least squares estimators in linear models. Ann. Math. Statist. 38 (1967), 1092-1109. DOI 10.1214/aoms/1177698779 | MR 0214237
Partner of
EuDML logo