[2] Baksalary, J. K., Markiewicz, A.:
A matrix inequality and admissibility of linear estimators with respect to the mean squared error criterion. Linear Algebra Appl. 112 (1989), 9-18.
MR 0976326
[3] Baksalary, J. K., Markiewicz, A.:
Admissible linear estimators of an arbitrary vector parametric function in the general Gauss-Markov model. J. Statist. Plann. Inference 26 (1990), 161-173.
DOI 10.1016/0378-3758(90)90124-D |
MR 1079260
[4] Cohen, A.:
Estimates of linear combinations of the parameters of the mean vector of a multivariate distribution. Ann. Math. Statist. 36 (1965), 78-87.
DOI 10.1214/aoms/1177700272 |
MR 0172399
[7] Groß, J.:
Löwner partial ordering and space preordering of Hermitian non-negative definite matrices. Linear Algebra Appl. 326 (2001), 215-223.
MR 1815961 |
Zbl 0979.15019
[8] Groß, J., Markiewicz, A.:
Characterization of admissible linear estimators in the linear model. Linear Algebra Appl. 388 (2004), 239-248.
MR 2077862
[9] Halmos, P. R.:
Finite-Dimensional Vector Spaces. Second edition. Springer-Verlag, New York 1993.
MR 0409503
[11] Klonecki, W.:
Linear estimators of mean vector in linear models: Problem of admissibility. Probab. Math. Statist. 2 (1982), 167-178.
MR 0711891
[16] Lehmann, E. L., Scheffé, H.:
Completeness, similar regions, and unbiased estimation - Part 1. Sankhyā A, 10 (1950), 305-340.
MR 0039201
[26] Stępniak, C.:
From equivalent linear equations to Gauss-Markov theorem. J. Inequal. Appl. (2010), ID 259672, 5 pages.
MR 2671027 |
Zbl 1204.62120
[28] Synówka-Bejenka, E., Zontek, S.:
A characterization of admissible linear estimators of fixed and random effects in linear models. Metrika 68 (2008), 157-172.
DOI 10.1007/s00184-007-0149-0 |
MR 2434311
[29] Zontek, S.:
Admissibility of limits of the unique locally best estimators with application to variance components models. Probab. Math. Statist. 9 (1988), 29-44.
MR 0985523
[30] Zyskind, G.:
On canonical forms, non-negative covariance matrices and best and simple least squares estimators in linear models. Ann. Math. Statist. 38 (1967), 1092-1109.
DOI 10.1214/aoms/1177698779 |
MR 0214237