[1] Al-Khaled, K.:
Theory and computation in hyperbolic model problems. Ph.D. Thesis. The University of Nebraska, Lincoln, USA (1996).
MR 2694551
[2] Al-Khaled, K.:
Sinc approximation of solution of Burgers' equation with discontinuous initial condition. O. P. Iliev, et al. Recent Advances in Numerical Methods and Applications Proceedings of the fourth international conference, NMA, 1998, Sofia, Bulgaria World Scientific, Singapore (1999), 503-511.
MR 1786646 |
Zbl 0980.65106
[5] Dafermos, C. M.:
Large time behavior of solutions of hyperbolic balance laws. Bull. Greek Math. Soc. 25 (1984), 15-29.
MR 0815565 |
Zbl 0661.35059
[7] Holden, H., Karlsen, K. H., Mitrovic, D., Panov, E. Yu.:
Strong compactness of approximate solutions to degenerate elliptic-hyperbolic equations with discontinuous flux function. Acta Math. Sci., Ser. B, Engl. Ed. 29 1573-1612 (2009).
DOI 10.1016/S0252-9602(10)60004-5 |
MR 2589093 |
Zbl 1212.35166
[8] Hopf, E.: The partial differential equation $u_{t}+uu_{x}=\mu u_{xx}$. Department of Mathematics, Indiana University (1942).
[9] Il'in, A. M., Oleĭnik, O. A.:
Asymptotic behavior of solutions of the Cauchy problem for some quasi-linear equations for large values of the time. Mat. Sb. 51 (1960), 191-216 Russian.
MR 0120469
[10] Lund, J., Bowers, K. L.:
Sinc Methods for Quadrature and Differential Equations. SIAM Philadelphia (1992).
MR 1171217 |
Zbl 0753.65081
[13] Venttsel', T. D.: Quasilinear parabolic systems with increasing coefficients. Vestn. Mosk. Gos. Univ., Series VI (1963), 34-44.