[2] Bellman, R.:
Dynamic Programming. With a new introduction by Stuart Dreyfus. Reprint of the 1957 edition. Princeton Landmarks in Mathematics Princeton University Press, Princeton (2010).
MR 2641641
[10] Gabasov, R., Kirillova, F. M., Mordukhovich, B. Sh.:
The $\varepsilon$-maximum principle for suboptimal controls. Sov. Math., Dokl. 27 (1983), 95-99 translation from Dokl. Akad. Nauk SSSR 268 525-529 (1983), Russian.
MR 0691086
[15] Karatzas, I., Lehoczky, J. P., Shreve, S. E.:
Optimal portfolio and consumption decisions for a "Small investor" on a finite horizon. SIAM J. Control Optim. 25 (1987), 1557-1586.
DOI 10.1137/0325086 |
MR 0912456 |
Zbl 0644.93066
[16] Mordukhovich, B. Sh.:
Approximation Methods in Problems of Optimization and Control. Russian Nauka Moskva (1988).
MR 0945143 |
Zbl 0643.49001
[17] Oksendal, B., Sulem, A.:
Applied Stochastic Control of Jump Diffusions. Second edition. Universitext Springer, Berlin (2007).
MR 2322248
[19] Peng, S., Wu, Z.:
Fully coupled forward-backward stochastic differential equations and application to optimal control. SIAM J. Control Optim. 37 (1999), 825-843.
DOI 10.1137/S0363012996313549 |
MR 1675098
[20] Pontryagin, L. S., Boltanskii, V. G., Gamkrelidze, R. V., Mishchenko, E. F.: The Mathematical Theory of Optimal Processes. Translation from the Russian Interscience Publishers, New York (1962).
[22] Shi, J.:
Necessary conditions for optimal control of forward-backward stochastic systems with random jumps. Int. J. Stoch. Anal. 2012 Article ID 258674, 50 pp (2012).
MR 2909930 |
Zbl 1239.93132
[23] Shi, J., Wu, Z.:
The maximum principle for fully coupled forward-backward stochastic control system. Acta Autom. Sin. 32 (2006), 161-169.
MR 2230926
[24] Shi, J., Wu, Z.:
Maximum principle for fully coupled forward-backward stochastic control system with random jumps. Proceedings of the 26$^ th$ Chinese Control Conference, Zhangjiajie, Hunan, 2007, pp. 375-380.
MR 2230926
[26] Situ, R.: A maximum principle for optimal controls of stochastic systems with random jumps. Proceedings of National Conference on Control Theory and its Applications Qingdao, China (1991).
[29] Yong, J.:
Optimality variational principle for controlled forward-backward stochastic differential equations with mixed intial-terminal conditions. SIAM J. Control. Optim. 48 (2010), 4119-4156.
DOI 10.1137/090763287 |
MR 2645476
[30] Yong, J., Zhou, X. Y.:
Stochastic Controls. Hamiltonian Systems and HJB Equations. Applications of Mathematics 43 Springer, New York (1999).
MR 1696772 |
Zbl 0943.93002
[34] Zhou, X. Y., Li, D.:
Continuous-time mean-variance portfolio selection: A stochastic LQ framework. Appl. Math. Optimization 42 (2000), 19-33.
MR 1751306 |
Zbl 0998.91023