Previous |  Up |  Next

Article

Keywords:
stochastic near-optimal controls; jump processes; forward-backward stochastic systems with jumps; necessary and sufficient conditions for near-optimality; Ekeland's variational principle
Summary:
We establish necessary and sufficient conditions of near-optimality for nonlinear systems governed by forward-backward stochastic differential equations with controlled jump processes (FBSDEJs in short). The set of controls under consideration is necessarily convex. The proof of our result is based on Ekeland's variational principle and continuity in some sense of the state and adjoint processes with respect to the control variable. We prove that under an additional hypothesis, the near-maximum condition on the Hamiltonian function is a sufficient condition for near-optimality. At the end, as an application to finance, mean-variance portfolio selection mixed with a recursive utility optimization problem is given.
References:
[1] Bahlali, K., Khelfallah, N., Mezerdi, B.: Necessary and sufficient conditions for near-optimality in stochastic control of FBSDEs. Syst. Control Lett. 58 (2009), 857-864. DOI 10.1016/j.sysconle.2009.10.005 | MR 2642755 | Zbl 1191.93142
[2] Bellman, R.: Dynamic Programming. With a new introduction by Stuart Dreyfus. Reprint of the 1957 edition. Princeton Landmarks in Mathematics Princeton University Press, Princeton (2010). MR 2641641
[3] Boel, R., Varaiya, P.: Optimal control of jump processes. SIAM J. Control Optim. 15 (1977), 92-119. DOI 10.1137/0315008 | MR 0441521 | Zbl 0358.93047
[4] Bouchard, B., Elie, R.: Discrete-time approximation of decoupled forward-backward SDE with jumps. Stochastic Processes Appl. 118 (2008), 53-75. DOI 10.1016/j.spa.2007.03.010 | MR 2376252 | Zbl 1136.60048
[5] Cadenillas, A.: A stochastic maximum principle for systems with jumps, with applications to finance. Syst. Control Lett. 47 (2002), 433-444. DOI 10.1016/S0167-6911(02)00231-1 | MR 2008454 | Zbl 1106.93342
[6] Ekeland, I.: On the variational principle. J. Math. Anal. Appl. 47 (1974), 324-353. DOI 10.1016/0022-247X(74)90025-0 | MR 0346619 | Zbl 0286.49015
[7] Karoui, N. El, Peng, S. G., Quenez, M. C.: Backward stochastic differential equations in finance. Math. Finance 7 (1997), 1-71. DOI 10.1111/1467-9965.00022 | MR 1434407 | Zbl 0884.90035
[8] Karoui, N. El, Peng, S. G., Quenez, M. C.: A dynamic maximum principle for the optimization of recursive utilities under constraints. Ann. Appl. Probab. 11 (2001), 664-693. DOI 10.1214/aoap/1015345345 | MR 1865020 | Zbl 1040.91038
[9] Framstad, N. C., Øksendal, B., Sulem, A.: Sufficient stochastic maximum principle for the optimal control of jump diffusions and applications to finance. J. Optim. Theory. Appl. 121 (2004), 77-98; erratum ibid. 124 511-512 (2005). DOI 10.1023/B:JOTA.0000026132.62934.96 | MR 2062971 | Zbl 1140.93496
[10] Gabasov, R., Kirillova, F. M., Mordukhovich, B. Sh.: The $\varepsilon$-maximum principle for suboptimal controls. Sov. Math., Dokl. 27 (1983), 95-99 translation from Dokl. Akad. Nauk SSSR 268 525-529 (1983), Russian. MR 0691086
[11] Hafayed, M., Abbas, S., Veverka, P.: On necessary and sufficient conditions for near-optimal singular stochastic controls. Optim. Lett. 7 (2013), 949-966. DOI 10.1007/s11590-012-0484-6 | MR 3057402 | Zbl 1272.93129
[12] Hafayed, M., Veverka, P., Abbas, S.: On maximum principle of near-optimality for diffusions with jumps, with application to consumption-investment problem. Differ. Equ. Dyn. Syst. 20 (2012), 111-125. DOI 10.1007/s12591-012-0108-8 | MR 2929755 | Zbl 1261.49004
[13] Huang, J., Li, X., Wang, G.: Near-optimal control problems for linear forward-backward stochastic systems. Automatica 46 (2010), 397-404. DOI 10.1016/j.automatica.2009.11.016 | MR 2877086 | Zbl 1205.93165
[14] Jeanblanc-Picqué, M., Pontier, M.: Optimal portfolio for a small investor in a market model with discontinuous prices. Appl. Math. Optimization 22 (1990), 287-310. DOI 10.1007/BF01447332 | MR 1068184 | Zbl 0715.90014
[15] Karatzas, I., Lehoczky, J. P., Shreve, S. E.: Optimal portfolio and consumption decisions for a "Small investor" on a finite horizon. SIAM J. Control Optim. 25 (1987), 1557-1586. DOI 10.1137/0325086 | MR 0912456 | Zbl 0644.93066
[16] Mordukhovich, B. Sh.: Approximation Methods in Problems of Optimization and Control. Russian Nauka Moskva (1988). MR 0945143 | Zbl 0643.49001
[17] Oksendal, B., Sulem, A.: Applied Stochastic Control of Jump Diffusions. Second edition. Universitext Springer, Berlin (2007). MR 2322248
[18] Pan, L. P., Teo, K. L.: Near-optimal controls of class of Volterra integral systems. J. Optimization Theory Appl. 101 (1999), 355-373. DOI 10.1023/A:1021741627449 | MR 1684675
[19] Peng, S., Wu, Z.: Fully coupled forward-backward stochastic differential equations and application to optimal control. SIAM J. Control Optim. 37 (1999), 825-843. DOI 10.1137/S0363012996313549 | MR 1675098
[20] Pontryagin, L. S., Boltanskii, V. G., Gamkrelidze, R. V., Mishchenko, E. F.: The Mathematical Theory of Optimal Processes. Translation from the Russian Interscience Publishers, New York (1962).
[21] Rishel, R.: A minimum principle for controlled jump processes. Control Theory, Numer. Meth., Computer Syst. Mod.; Internat. Symp. Rocquencourt 1974, Lecture Notes Econ. Math. Syst. 107 (1975), 493-508. DOI 10.1007/978-3-642-46317-4_35 | MR 0386829 | Zbl 0313.93065
[22] Shi, J.: Necessary conditions for optimal control of forward-backward stochastic systems with random jumps. Int. J. Stoch. Anal. 2012 Article ID 258674, 50 pp (2012). MR 2909930 | Zbl 1239.93132
[23] Shi, J., Wu, Z.: The maximum principle for fully coupled forward-backward stochastic control system. Acta Autom. Sin. 32 (2006), 161-169. MR 2230926
[24] Shi, J., Wu, Z.: Maximum principle for fully coupled forward-backward stochastic control system with random jumps. Proceedings of the 26$^ th$ Chinese Control Conference, Zhangjiajie, Hunan, 2007, pp. 375-380. MR 2230926
[25] Shi, J., Wu, Z.: Maximum principle for forward-backward stochastic control system with random jumps and applications to finance. J. Syst. Sci. Complex. 23 (2010), 219-231. DOI 10.1007/s11424-010-7224-8 | MR 2653585 | Zbl 1197.93165
[26] Situ, R.: A maximum principle for optimal controls of stochastic systems with random jumps. Proceedings of National Conference on Control Theory and its Applications Qingdao, China (1991).
[27] Tang, S. L., Li, X. J.: Necessary conditions for optimal control of stochastic systems with random jumps. SIAM J. Control Optim. 32 (1994), 1447-1475. DOI 10.1137/S0363012992233858 | MR 1288257 | Zbl 0922.49021
[28] Xu, W.: Stochastic maximum principle for optimal control problem of forward and backward system. J. Aus. Math. Soc., Ser. B 37 (1995), 172-185. DOI 10.1017/S0334270000007645 | MR 1359179 | Zbl 0862.93067
[29] Yong, J.: Optimality variational principle for controlled forward-backward stochastic differential equations with mixed intial-terminal conditions. SIAM J. Control. Optim. 48 (2010), 4119-4156. DOI 10.1137/090763287 | MR 2645476
[30] Yong, J., Zhou, X. Y.: Stochastic Controls. Hamiltonian Systems and HJB Equations. Applications of Mathematics 43 Springer, New York (1999). MR 1696772 | Zbl 0943.93002
[31] Zhou, X. Y.: Deterministic near-optimal control. I: Necessary and sufficient conditions for near-optimality. J. Optimization Theory Appl. 85 (1995), 473-488. DOI 10.1007/BF02192237 | MR 1333798 | Zbl 0826.49015
[32] Zhou, X. Y.: Deterministic near-optimal controls. II: Dynamic programming and viscosity solution approach. Math. Oper. Res. 21 (1996), 655-674. DOI 10.1287/moor.21.3.655 | MR 1403310 | Zbl 0858.49023
[33] Zhou, X. Y.: Stochastic near-optimal controls: Necessary and sufficient conditions for near-optimality. SIAM J. Control. Optim. 36 (1998), 929-947 (electronic). DOI 10.1137/S0363012996302664 | MR 1613885 | Zbl 0914.93073
[34] Zhou, X. Y., Li, D.: Continuous-time mean-variance portfolio selection: A stochastic LQ framework. Appl. Math. Optimization 42 (2000), 19-33. MR 1751306 | Zbl 0998.91023
Partner of
EuDML logo