[1] Argatov, I. I., Nazarov, S. A.:
Energy release caused by the kinking of a crack in a plane anisotropic solid. Translated from the Russian. J. Appl. Math. Mech. 66 (2002), 491-503.
DOI 10.1016/S0021-8928(02)00059-X |
MR 1937462
[2] Bach, M., Nazarov, S. A., Wendland, W. L.:
Stable propagation of a mode-1 planar crack in an isotropic elastic space. Comparison of the Irwin and the Griffth approaches. Problemi attuali dell'analisi e della fisica matematica P. E. Ricci Dipartimento di Matematica, Univ. di Roma (2000), 167-189.
MR 1809025
[4] Ciarlet, P. G.:
An introduction to differential geometry with applications to elasticity. J. Elasticity 78-79 (2005), 1-215.
MR 2196098 |
Zbl 1086.74001
[9] Dauge, M.:
Elliptic Boundary Value Problems on Corner Domains. Lecture Notes in Mathematics 1341 Springer, Berlin (1988).
MR 0961439 |
Zbl 0668.35001
[10] Lorenzi, H. G. de:
On the energy release rate and the $J$-integral for 3-D crack configurations. Int. J. Fract. 19 (1982), 183-193.
DOI 10.1007/BF00017129
[12] Griffith, A. A.:
The phenomena of rupture and flow in solids. Philos. Trans. Roy. Soc. London 221 (1921), 163-198.
DOI 10.1098/rsta.1921.0006
[13] Hartranft, R. J., Sih, G. C.:
Stress singularity for a crack with an arbitrarily curved front. Engineering Fracture Mechanics 9 (1977), 705-718.
DOI 10.1016/0013-7944(77)90083-2
[14] Il'in, A. M.:
Matching of Asymptotic Expansions of Solutions of Boundary Value Problems. Translated from the Russian. Translations of Mathematical Monographs 102 American Mathematical Society, Providence (1992).
DOI 10.1090/mmono/102 |
MR 1182791 |
Zbl 0754.34002
[15] Irwin, G.:
Fracture. Handbuch der Physik. Bd. 6: Elastizität und Plastizität S. Flügge Springer, Berlin 551-590 (1958).
MR 0094946
[16] Kondrat'ev, V. A.:
Boundary value problems for elliptic equations in domains with conical or angular points. Trans. Mosc. Math. Soc. 16 (1967), 227-313.
MR 0226187
[17] Kozlov, V. A., Maz'ya, V. G., Rossmann, J.:
Elliptic Boundary Value Problems in Domains with Point Singularities. Mathematical Surveys and Monographs 52 American Mathematical Society, Providence (1997).
MR 1469972 |
Zbl 0947.35004
[18] Kühnel, W.:
Differential Geometry. Curves--Surfaces--Manifolds. Translated from the German. Student Mathematical Library 16 American Mathematical Society, Providence (2002).
MR 1882174
[19] Lazarus, V.:
Brittle fracture and fatigue propagation paths of 3D plane cracks under uniform remote tensile loading. Int. J. Fract. 122 (2003), 23-46.
DOI 10.1023/B:FRAC.0000005373.73286.5d
[20] Leblond, J.-B., Torlai, O.:
The stress field near the front of an arbitrarily shaped crack in a three-dimensional elastic body. J. Elasticity 29 (1992), 97-131.
DOI 10.1007/BF00044514 |
Zbl 0777.73054
[21] Maz'ya, V. G., Plamenevsky, B. A.: The coefficients in the asymptotic of the solutions of elliptic boundary-value problems in domains with conical points. Russian Math. Nachr. 76 (1977), 29-60.
[24] Nazarov, S. A., Plamenevsky, B. A.:
Elliptic Problems in Domains with Piecewise Smooth Boundaries. De Gruyter Expositions in Mathematics 13 Walter de Gruyter, Berlin (1994).
MR 1283387 |
Zbl 0806.35001
[25] Nazarov, S. A., Polyakova, O. R.:
Rupture criteria, asymptotic conditions at crack tips, and selfadjoint extensions of the Lamé operator. Russian Tr. Mosk. Mat. Obs. 57 (1996), 16-74.
MR 1468975
[26] Parks, D. M.:
A stiffness derivative finite element technique for determination of crack tip stress intensity factors. Int. J. Fract. 10 (1974), 487-502.
DOI 10.1007/BF00155252
[27] Sih, G. C., Paris, P. C., Irwin, G. R.: On cracks in rectilinearly anisotropic bodies. Int. J. Fract. 1 (1965), 189-203.
[28] Steigemann, M.:
Verallgemeinerte Eigenfunktionen und lokale Integralcharakteristiken bei quasi-statischer Rissausbreitung in anisotropen Materialien. German Berichte aus der Mathematik Shaker, Aachen (2009).
Zbl 1181.35286
[29] Williams, M. L.: Stress singularities resulting from various boundary conditions in angular corners of plates in extension. J. Appl. Mech. 19 (1952), 526-528.