[2] Giga, M., Giga, Y., Saal, J.:
Nonlinear Partial Differential Equations. Asymptotic Behavior of Solutions and Self-Similar Solutions. Progress in Nonlinear Differential Equations and Their Applications 79 Birkhäuser, Boston (2010).
MR 2656972 |
Zbl 1215.35001
[6] Levermore, C. D., Oliver, M.:
The complex Ginzburg-Landau equation as a model problem. Dynamical Systems and Probabilistic Methods in Partial Differential Equations P. Deift et al. Lect. Appl. Math. 31 AMS, Providence 141-190 (1996).
MR 1363028 |
Zbl 0845.35003
[8] Matsumoto, T., Tanaka, N.:
Well-posedness for the complex Ginzburg-Landau equations. Current Advances in Nonlinear Analysis and Related Topics T. Aiki et al. GAKUTO Internat. Ser. Math. Sci. Appl. 32 Gakk$\bar o$tosho, Tokyo (2010), 429-442.
MR 2668292 |
Zbl 1208.35143
[9] Okazawa, N.:
Smoothing effect and strong $L^2$-wellposedness in the complex Ginzburg-Landau equation. Differential Equations. Inverse and Direct Problems A. Favini, A. Lorenzi Lecture Notes in Pure and Applied Mathematics 251 CRC Press, Boca Raton (2006), 265-288.
DOI 10.1201/9781420011135.ch14 |
MR 2275982 |
Zbl 1110.35030
[12] Okazawa, N., Yokota, T.:
Non-contraction semigroups generated by the complex Ginz-burg-Landau equation. Nonlinear Partial Differential Equations and Their Applications N. Kenmochi et al. GAKUTO Internat. Ser. Math. Sci. Appl. 20 Gakk$\bar o$tosho, Tokyo (2004), 490-504.
MR 2087493
[15] Yokota, T., Okazawa, N.:
Smoothing effect for the complex Ginzburg-Landau equation (general case). Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 13B (2006), suppl., 305-316.
MR 2268800