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CAUCHY PROBLEM FOR THE COMPLEX GINZBURG-LANDAU
TYPE EQUATION WITH LP-INITIAL DATA
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Abstract. This paper gives the local existence of mild solutions to the Cauchy problem
for the complex Ginzburg-Landau type equation

% — (A tia)Au+ (5 +iB)u|? tu—yu =0

in RY x (0, 00) with LP-initial data ug in the subcritical case (1 < ¢ < 1+ 2p/N), where u
is a complex-valued unknown function, o, 3, 7, k ER, A >0,p > 1,i=+/—1and N € N.
The proof is based on the LP-L? estimates of the linear semigroup {exp(t(A + ia)A)} and
usual fixed-point argument.
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1. INTRODUCTION AND MAIN RESULT
We consider the Cauchy problem for the complex Ginzburg-Landau type equation,

(CGL) S = (A ia)Au+ (s B)ult = yu =0 in RY x (0,00)

u(-,0) =ug on RV,

where u is a complex-valued unknown function, o, 3,7,k € R, A >0, ¢ > 1,1 =
V=1 and N € N. Our concern is the local existence of mild solutions to (CGL)
with kK € R. We call it the complex Ginzburg-Landau “type” equation because it
is usually assumed in (CGL) that £ > 0. There are many studies on the global
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existence and uniqueness of solutions to (CGL) in various cases, see, e.g., Yang [14],
Levermore-Oliver [6], Ginibre-Velo [3], [4], Okazawa-Yokota [10]-[13], Okazawa [9],
Yokota-Okazawa [15], Kobayashi-Matsumoto-Tanaka [5], Matsumoto-Tanaka [7], [8],
Clément-Okazawa-Sobajima-Yokota [1].

The following table shows more general results for the solvability of (CGL) on
LP(Q) with LP()-initial data, where Q C RY:

Ref. (p, q)-condition Q solution other condition
2
9] 1<p 1<g<l+ ﬁp bounded C'-in-time, local A>0
2 2v/p—1
8 1<p, 1<g<L1+ P general, smooth C'-in-time, global M < i
N A lp — 2|
D —

The purpose of this paper is to establish the local existence of solutions to (CGL)
in the case 2 = RY under almost the same conditions as in [9, Proposition 1.1].
Before stating our results, we introduce an operator A,.

Definition 1.1 (CGL-operator). Let A > 0, « € R and assume that an operator
Ap: D(A,) (C LP(RY)) — LP(RYN) (1 < p < o) satisfies
D(4,) = W2P(RN)N W P(RY), Apu:=—A+ia)Au (ue D(4,)).

Then we say that A, is a CGL-operator.

Using the operator A,, we can regard (CGL) as an abstract Cauchy problem on
LP(RN):

d
(ccL) U At (54 1)l = yu =0 i (0,00).
Lp
u(0) = uo.

Strictly speaking, (CGL)r» might not be called the abstract Cauchy problem, be-
cause it still has a concretely nonlinear term |u|7™1u.

We will show that there exists a semigroup {e~*4#};>, which is generated by A,
(see Section 2). This semigroup will be called a CGL-semigroup. Then we can define
a mild solution to (CGL)r».

Definition 1.2 (mild solution). Let ug € LP(RY) and T' > 0. Then u: [0,7) —
LP(RYN) is called a mild solution to (CGL)z» on [0,T) if u € C([0,T); LP(RY)) and

(IB) u(t) = e~ *ru + / =9 [yu(s) — (k +1iB)[u(s)[*  u(s)]ds, ¢ € [0,T).

We now state our main result in this paper.
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Theorem 1.1. Let ug € LP(RY) (1 < p < 00) and assume that

l<qge1s 2P
<q .

Then there exist Ty > 0 and a mild solution to (CGL)r» on [0, Tp).

Remark 1.1. We can show the uniqueness of mild solutions belonging to Y7
which is defined in Section 3. It seems that the global existence can be proved under
some conditions for initial data and coefficients. We will discuss these and the critical
case ¢ =1+ 2p/N in our future work.

In Section 2, we give some lemmas and study the CGL-semigroup {e~*4»}, in

particular, we derive the LP-L9 estimates of {e~*4#}. In Section 3, we prove Theo-

rem 1.1.

2. CONSTRUCTION OF CGL-SEMIGROUP

First we prepare some lemmas to prove the existence of the CGL-semigroup and
to obtain its properties.

The following lemma gives a simple equality, which is proved by the methods of
complex analysis.

Lemma 2.1. Let z € C\ {0} with Rez > 0. Then

foan=()™

Proof. It suffices to show that

(2.1) I:= /000 e~ dg = l(E)l/z.

2\z

2

We show only the case Imz > 0. Set f: C — C satisfying f(w) := e™* and
let R > 0 and 0 := %arg z. Then it follows from the Cauchy integral theorem
that [, f(w)dw = 0, where C' is the curve in the complex plane formed by C' =
C1 + Cr — C3. Here (7 and C5 are the directed line segments from the origin 0 to
R and Reie, respectively. Cg is the counterclockwise arc of the circle centered at the
origin with radius R and sector 0 < argw < 6. Noting 6 < n/4, we see from the
Cauchy integral theorem that

R 0 . R/+\/12] .
O:/ e’ dx—i—iR/ e*(Re')2e‘5ds—\/E/ e 2% dg — \/TE—i—O—\/ZI
0 0

0

as R — oo. So we obtain (2.1). The case Im z < 0 is shown analogously. (]
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The next lemma constitutes the CGL-semigroup e~ *» and its kernel.

Lemma 2.2. Lett >0, A >0, « € R and set
Gi(x) := [Ant(A + ioz)]_N/Qe_‘;”‘2/(4“)‘4'1“))7 ze RN,
Then a one-parameter family {T(t)};>0 of operators on LP(RY) defined as

Gy f = [Ant(X + ioz)]_N/Q/ e_l'_ylz/(‘lt(k"’i(’))f(y) dy, t>0,
RN

(2.2) T(t)f = {
[, t=0,

where f € LP(RY), is a semigroup which is generated by A,.
We will see from Lemma 2.2 that T'(t) can be represented as e~ t4».

Proof. We consider the linear Cauchy problem

(2.3) %(m,t) = (A +ia)Au(x, t); u(+,0) := ug € LP(RY).

Using the Fourier transformation in x, we obtain the solution to (2.3) by
u(-,t) _ ffl[ef()\+ia)|§|2t(]:u())] _ ]_-—l[ef()\Jria)‘ERt] * UQ.

We see from Lemma 2.1 that

]:—1[6—(/\+ia)\5\2t] = —(271)N/RN expliz - & — (A + i) [€]%t] d¢

1 2 ; ir 2
— —le]?/(4(r+ia)t) [_ P t‘ _ 7‘ } d
(QR)Ne /[RN exp | = (A+iajt]g 2\ +ia)t ¢
= Gy().
Since we can verify that T'(t)ug is a solution to (2.3), the assertion follows. O

The following lemma can be proved in a similar way as in the proof for the heat
semigroup (see also Giga-Giga-Saal [2, Section 1.1.2]).
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Lemma 2.3 (LP-LY estimates). Let 1 <p < oo, p < g < oo and t > 0. Then the
following LP-L? estimate of the CGL-semigroup {e~*4#} holds:

€74 fll o < My gt =N/ WEmVD| £, f € LP(RY),

where

N ( 1 >(N/2>~<1/p—1/q>(W)W”“1/“1/‘1)
PO \ny/ N2+ o2 A '

Proof. Let 1 <r < oo. Then using Lemma 2.1, we have

1 (N/2)-(1-1/7) [ /A2 + a2\ /")
4Ttt\/m) ( r > ~

Noting »~'/" < 1 and applying the Hausdorff-Young inequality to (2.2), we can

IGeller = (

obtain the assertion. O

3. LOCAL SOLVABILITY OF (CGL)

In this section, we prove Theorem 1.1. The proof is based on the fixed-point

theorem.

Proof of Theorem 1.1. Let R > 0 with R > (M, , + M, pq)|luo||zr. Set

Yr = {u € L5, (0, T3 LP(R™)) N L>(0, T5 LP(R™)); [lully,. < o0},

lullvy == sup [lu(®)]|zes + sup [u(t)]|zr,
te(0,T) te(0,T)
N /1 1
9;:—(———) 0<0<1/g<1),
TR ( / )

where T' € (0,1). Then Y7 is a complex Banach space. Moreover, set the ball in Y7;

Brr = {u e Yr; |uly, < R}

— vV
and the operator ®,, on Br r T

t
(B1)  @u(u)(t) = rup + / e~ [yu(s) — (k +18)|u(s)| " u(s)] ds.

0
Then we show that @, has a fixed-point u (Step 1, Step 2). After that we confirm
that u(-) is a unique solution to (CGL)» (Step 3).
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Step 1 (u € BT,RYT = b, (u) € BT,RYT). Let u € BT,RYT. Then we have
t
(3:2) || Pug(u)()][Lra < [le™ o] Loa + |7|/ lle™ = 4ru(s) | Loa ds
0

¢
+ VK2 +/32/ lle= =940 |y (5)|9 M u(s)|| Lo ds
0
= 11 pg + [YH2pg + VK2 + 8213 g

Since 0 < 0 < g0 < 1, it follows from Lemma 2.3 that

(3-3) I pq < t_aMp,quUOHLPa
t
(3.4) Iypg < My g / (t — 5)~ u(s) | ds
< tlfe Mp:qu
N 1—-0 "
t
(3.5) B < My [ (6= 9) " Julo)]L0 ds
0

t
< Mp’quq/ (t—s) s ds
0
=¢i=@tDop RIB(1—qf,1—6),

where B is the Beta function. Since ¢ € (0,1), we have ¢t < t'79°. Combining
(3.3)—(3.5) with (3.2), we see that

(3.6) 17| Pug () (Ol Lra < Mp,pglluo]| Lo + T RCy,

where

Cl = Mpmq(% + Rq_lB(l — q9, 1-— 9)\/ K2 + 52>

Next we estimate the LP-norm of (3.1). Similarly as in (3.3)—(3.5), we see
¢
1@ (W) (t)l|ze < lle™ 4 uol e + |7|/0 le= =4 u(s)[| e ds

t
FVRTE [l o) (o) ds
0

Mmeq

< My plollor + [7EMyp R+ /62 o+ B0 22

Thus we have
(3.7) 1%y (@)l 0 < My plluoll o + T RC,
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where
RQ*I /HZ +62>

Cy = Mp,p<|7| + 1—q0

It follows from (3.6) and (3.7) that
[Puo (W)llvr < (Mp,p + Mppg)|luollzr + TliqeR(Cl + C2).

Therefore we obtain
[@uo (W)llye < B (T < T1),

where

R — (Myp + My pq) |luol| e } 1/(1=4q9)

7= | R(Cr + Cs)

— v -V
Step 2 (®y,: contraction in Br p T). Let u,v € Br.r T, Then we have

[Py () (£) = P (V) ()| Lra < [V[T1pg + VK + 52T2,pg,

where
t
T 1= [ e fuls) = (o) s,
t
J2,pq 12/0 lle™ =4 [Ju(s)[ 1 u(s) — [v(s)|*™ ()] Lo ds.
Similarly as in (3.4) and (3.5), it follows from Lemma 2.3 that

_oM,
J1pg < ¢ 1 ip; lu—=vllvz,

t
J2.pq < anqfl/o (t =) () Tos + lo(s)|Foa)lluls) = v(s) ]| Lra ds

<@g 0, L RITVB(1 - g0,1 — 0)|u — vlyy..
Therefore we have for ¢ € (0,T)
(3-8) 7| Pug () () = g (v) ()| 2va < TCJu = vy,
where

C = Mp,pq(llje +2qRIB(1 - g8, 1 - 0)v/w? + B?).

As in the proof of (3.7) we see from Lemma 2.3 that

(3.9) 1@ () (8) = Pug (V) ()| < TP Chllu— vy, t€(0,T),

359



where

Cy =My (|’Y| +2q 1—q0

Combining (3.8) and (3.9), we have
1
1Puq (w) = Puo (V)llyr < 5llu—vllyr (T <T2),

where Ty := (2C7 + 205)71/(17119)'

Hence it follows from the fixed-point theorem that ®,, has a unique fixed-point

-V ) —V .
u € Bry r 7o where Tp := min{7Ty,T>}. Moreover, u € Br, r 70 satisfies (IE).

Step 3 (u € C([0,Tp); LP(RY))). Finally we prove that u € BTO7RYT° given by

Step 2 is a mild solution to (CGL)». Set

F(s) = yu(s) = (5 +iB)lu(s)| " u(s).
Then it suffices to show that
(3.10) f € LY (0, Ty; LP(RY)).

Since ||u(s)||z» < R and ||u(s)||zr« < Rs~? for s € (0,Tp), we have

To
/ [lu(s)||Lr ds < RTp,
0

To To Rqu_qa
[ s s < mr 7w ag = BT
0 0

1—¢qb

Therefore (3.10) follows.

O
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