[1] Benyamini Y., Lindenstrauss J.:
Geometric Nonlinear Functional Analysis, Vol. 1. Colloquium Publications, 48, American Mathematical Society, Providence, 2000.
MR 1727673
[2] Bongiorno D.:
Stepanoff's theorem in separable Banach spaces. Comment. Math. Univ. Carolin. 39 (1998), 323–335.
MR 1651959 |
Zbl 0937.46038
[3] Bongiorno D.:
Radon-Nikodým property of the range of Lipschitz extensions. Atti Sem. Mat. Fis. Univ. Modena 48 (2000), 517–525.
MR 1811552
[5] Conway J.B.:
A course in functional analysis. 2nd ed., Graduate Texts in Mathematics, 96, Springer, New York, 1990.
MR 1070713 |
Zbl 0706.46003
[6] Crouzeix J.-P.:
Continuity and differentiability of quasiconvex functions. Handbook of generalized convexity and generalized monotonicity, pp. 121–149, Nonconvex Optim. Appl. 76, Springer, New York, 2005.
DOI 10.1007/0-387-23393-8_3 |
MR 2098899 |
Zbl 1077.49015
[11] Engelking R.:
General Topology. 2nd ed., Sigma Series in Pure Mathematics, 6, Heldermann Verlag, Berlin, 1989.
MR 1039321 |
Zbl 0684.54001
[12] Fabian M., Habala P., Hájek P., Montesinos Santalucía V., Pelant J., Zizler V.:
Functional analysis and infinite-dimensional geometry. CMS Books in Mathematics, 8, Springer, New York, 2001.
MR 1831176 |
Zbl 0981.46001
[15] Lindenstrauss J., Preiss D., Tišer J.:
Fréchet Differentiability of Lipschitz Maps and Porous Sets in Banach Spaces. Princeton University Press, Princeton, 2012.
MR 2884141 |
Zbl 1139.46036
[16] Malý J.:
A simple proof of the Stepanov theorem on differentiability almost everywhere. Exposition. Math. 17 (1999), 59–61.
MR 1687460 |
Zbl 0930.26005
[17] Malý J., Zajíček L.: On Stepanov type differentiability theorems. submitted.
[20] Preiss D., Zajíček L.:
Fréchet differentiation of convex functions in a Banach space with a separable dual. Proc. Amer. Math. Soc. 91 (1984), 202–204.
MR 0740171 |
Zbl 0521.46034
[22] Rabier P.J.:
Differentiability of quasiconvex functions on separable Banach spaces. preprint, 2013, arXiv:1301.2852v2.
MR 3136598
[23] Zajíček L.:
Fréchet differentiability, strict differentiability and subdifferentiability. Czechoslovak Math. J. 41 (1991), 471–489.
MR 1117801 |
Zbl 0760.46038
[25] Zajíček L.:
On sets of non-differentiability of Lipschitz and convex functions. Math. Bohem. 132 (2007), 75–85.
MR 2311755 |
Zbl 1171.46314
[26] Zajíček L.: Hadamard differentiability via Gâteaux differentiability. Proc. Amer. Math. Soc.(to appear).