Previous |  Up |  Next

Article

Keywords:
non-expansive mappings; fixed point property; Banach spaces isomorphic to $c_0$
Summary:
We consider a Banach space, which comes naturally from $c_0$ and it appears in the literature, and we prove that this space has the fixed point property for non-expansive mappings defined on weakly compact, convex sets.
References:
[1] Alspach D.: A fixed point free nonexpansive map. Proc. Amer. Math. Soc. 82 (1981), 423–424. DOI 10.1090/S0002-9939-1981-0612733-0 | MR 0612733 | Zbl 0468.47036
[2] Argyros S.A., Deliyanni I., Tolias A.G.: Hereditarily indecomposable Banach Algebras of diagonal operators. Israel J. Math. 181 (2011), 65–110. DOI 10.1007/s11856-011-0004-x | MR 2773038 | Zbl 1219.46013
[3] Browder F.E.: Nonexpansive nonlinear operators in Banach spaces. Proc. Nat. Acad. Sci. U.S.A. 54 (1965), 1041–1044. DOI 10.1073/pnas.54.4.1041 | MR 0187120
[4] Elton J., Lin P., Odell E., Szarek S.: Remarks on the fixed point problem for nonexpansive maps. Contemporary Math. 18 (1983), 87–119. DOI 10.1090/conm/018/728595 | MR 0728595 | Zbl 0528.47040
[5] Hagler J.: A counterexample to several questions about Banach spaces. Studia Math. 60 (1977), 289–308. MR 0442651 | Zbl 0387.46015
[6] Karlovitz L.A.: Existence of fixed points for nonexpansive mappings in a space without normal structure. Pacific J. Math. 66 (1976), 153–159. DOI 10.2140/pjm.1976.66.153 | MR 0435951
[7] Kirk W.A.: A fixed point theorem for mappings which do not increase distances. Amer. Math. Monthly 72 (1965), 1004–1006. DOI 10.2307/2313345 | MR 0189009 | Zbl 0141.32402
[8] Maurey B.: Points fixes des contractions sur un convexe forme de $L^1$. Seminaire d' Analyse Fonctionelle 80–81, Ecole Polytechnique, Palaiseau, 1981. MR 0659309
Partner of
EuDML logo