[3] Du, Q., Zhang, M.:
A non-overlapping domain decomposition algorithm based on the natural boundary reduction for wave equations in an unbounded domain. Numer. Math., J. Chin. Univ. 13 (2004), 121-132.
MR 2156269 |
Zbl 1075.65121
[4] Feng, K.:
Finite element method and natural boundary reduction. Proc. Int. Congr. Math., Warszawa 1983, Vol. 2, Z. Ciesielski et al. PWN-Polish Scientific Publishers Warszawa; North-Holland, Amsterdam (1984), 1439-1453.
MR 0804790 |
Zbl 0569.65076
[7] Hlaváček, I., Křížek, M., Malý, J.:
On Galerkin approximations of a quasilinear nonpotential elliptic problem of a nonmonotone type. J. Math. Anal. Appl. 184 (1994), 168-189.
DOI 10.1006/jmaa.1994.1192 |
MR 1275952
[9] Liu, D., Yu, D.:
A FEM-BEM formulation for an exterior quasilinear elliptic problem in the plane. J. Comput. Math. 26 (2008), 378-389.
MR 2421888 |
Zbl 1174.65049
[10] Meddahi, S., González, M., Pérez, P.:
On a FEM-BEM formulation for an exterior quasilinear problem in the plane. SIAM J. Numer. Anal. 37 (2000), 1820-1837.
DOI 10.1137/S0036142998335364 |
MR 1766849
[12] Yu, D.:
Domain decomposition methods for unbounded domains. Domain Decomposition Methods in Sciences and Engineering (Beijing, 1995) R. Glowinski et al. Wiley Chichester 125-132 (1997).
MR 1943455
[13] Yu, D.:
Natural Boundary Integral Method and its Applications. Translated from the 1993 Chinese original. Mathematics and its Applications 539 Kluwer Academic Publishers, Dordrecht (2002); Science Press Beijing, Beijing
MR 1961132 |
Zbl 1028.65129
[14] Zhu, W., Huang, H. Y.:
Non-overlapping domain decomposition method for an anisotropic elliptic problem in an exterior domain. Chinese J. Numer. Math. Appl. 26 (2004), 87-101.
MR 2087218