[5] Dai, B., Su, H., Hu, D.:
Periodic solution of a delayed ratio-dependent predator-prey model with monotonic functional response and impulse. Nonlinear Anal., Theory Methods Appl. 70 (2009), 126-134.
MR 2468223 |
Zbl 1166.34043
[8] Lakmeche, A., Arino, O.:
Bifurcation of non trivial periodic solutions of impulsive differential equations arising chemotherapeutic treatment. Dyn. Contin. Discrete Impulsive Syst. 7 (2000), 265-287.
MR 1744966 |
Zbl 1011.34031
[9] Lakshmikantham, V., Baĭnov, D. D., Simeonov, P. S.:
Theory of Impulsive Differential Equations. Series in Modern Applied Mathematics 6 World Scientific, Singapore (1989).
MR 1082551
[16] Samoĭlenko, A. M., Perestyuk, N. A.:
Impulsive Differential Equations. Transl. from the Russian by Yury Chapovsky. World Scientific Series on Nonlinear Science, Series A 14 World Scientific, Singapore (1995).
MR 1355787 |
Zbl 0837.34003
[17] Sun, J., Chen, H., Nieto, J. J., Otero-Novoa, M.:
The multiplicity of solutions for perturbed second-order Hamiltonian systems with impulsive effects. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 72 (2010), 4575-4586.
DOI 10.1016/j.na.2010.02.034 |
MR 2639205 |
Zbl 1198.34036
[19] Tian, Y., Ge, W.:
Variational methods to Sturm-Liouville boundary value problem for impulsive differential equations. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 72 (2010), 277-287.
DOI 10.1016/j.na.2009.06.051 |
MR 2574937 |
Zbl 1191.34038
[23] Wu, X., Wang, S.:
On a class of damped vibration problems with obstacles. Nonlinear Anal., Real World Appl. 11 (2010), 2973-2988.
MR 2661960 |
Zbl 1202.34082
[28] Zhou, J., Li, Y.:
Existence of solutions for a class of second-order Hamiltonian systems with impulsive effects. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 72 (2010), 1594-1603.
DOI 10.1016/j.na.2009.08.041 |
MR 2577560 |
Zbl 1193.34057