Previous |  Up |  Next

Article

Title: Existence of positive periodic solutions of higher-order functional difference equations (English)
Author: Liu, Xin-Ge
Author: Tang, Mei-Lan
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 59
Issue: 1
Year: 2014
Pages: 25-36
Summary lang: English
.
Category: math
.
Summary: Based on the fixed-point theorem in a cone and some analysis skill, a new sufficient condition is obtained for the existence of positive periodic solutions for a class of higher-order functional difference equations. An example is used to illustrate the applicability of the main result. (English)
Keyword: positive periodic solution
Keyword: existence of positive periodic solution
Keyword: fixed-point theorem
Keyword: difference equation
MSC: 34K13
MSC: 39A23
MSC: 39A70
idZBL: Zbl 06346370
idMR: MR3164574
DOI: 10.1007/s10492-014-0039-5
.
Date available: 2014-01-28T13:54:12Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/143596
.
Reference: [1] Cheng, S., Zhang, G.: Positive periodic solutions of a discrete population model.Funct. Differ. Equ. 7 (2000), 223-230. Zbl 1040.92034, MR 1940501
Reference: [2] Deimling, K.: Nonlinear Functional Analysis.Springer Berlin (1985). Zbl 0559.47040, MR 0787404
Reference: [3] Fan, M., Wang, K.: Periodic solutions of a discrete time nonautonomous ratio-dependent predator-prey system.Math. Comput. Modelling 35 (2002), 951-961. Zbl 1050.39022, MR 1910673, 10.1016/S0895-7177(02)00062-6
Reference: [4] Guo, D., Lakshmikantham, V.: Nonlinear Problems in Abstract Cones.Notes and Reports in Mathematics in Science and Engineering 5 Academic Press, Boston (1988). Zbl 0661.47045, MR 0959889
Reference: [5] Li, Y., Lu, L.: Positive periodic solutions of higher-dimensional nonlinear functional difference equations.J. Math. Anal. Appl. 309 (2005), 284-293. Zbl 1079.39009, MR 2154042, 10.1016/j.jmaa.2005.01.038
Reference: [6] Ma, R., Ma, H.: Existence of sign-changing periodic solutions of second order difference equations.Appl. Math. Comput. 203 (2008), 463-470. Zbl 1186.39018, MR 2458964, 10.1016/j.amc.2008.05.125
Reference: [7] Raffoul, Y. N.: Positive periodic solutions of nonlinear functional difference equations.Electron. J. Differ. Equ. (electronic only) 2002 (2002), Paper No. 55. Zbl 1007.39005, MR 1911922
Reference: [8] Wang, W., Chen, X.: Positive periodic solutions for higher order functional difference equations.Appl. Math. Lett. 23 (2010), 1468-1472. Zbl 1205.39016, MR 2718532, 10.1016/j.aml.2010.08.013
Reference: [9] Zhang, R. Y., Wang, Z. C., Chen, Y., Wu, J.: Periodic solutions of a single species discrete population model with periodic harvest/stock.Comput. Math. Appl. 39 (2000), 77-90. Zbl 0970.92019, MR 1729420, 10.1016/S0898-1221(99)00315-6
Reference: [10] Zhu, L., Li, Y.: Positive periodic solutions of higher-dimensional functional difference equations with a parameter.J. Math. Anal. Appl. 290 (2004), 654-664. Zbl 1042.39005, MR 2033049, 10.1016/j.jmaa.2003.10.014
.

Files

Files Size Format View
AplMat_59-2014-1_3.pdf 241.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo