Previous |  Up |  Next

Article

Keywords:
positive periodic solution; existence of positive periodic solution; fixed-point theorem; difference equation
Summary:
Based on the fixed-point theorem in a cone and some analysis skill, a new sufficient condition is obtained for the existence of positive periodic solutions for a class of higher-order functional difference equations. An example is used to illustrate the applicability of the main result.
References:
[1] Cheng, S., Zhang, G.: Positive periodic solutions of a discrete population model. Funct. Differ. Equ. 7 (2000), 223-230. MR 1940501 | Zbl 1040.92034
[2] Deimling, K.: Nonlinear Functional Analysis. Springer Berlin (1985). MR 0787404 | Zbl 0559.47040
[3] Fan, M., Wang, K.: Periodic solutions of a discrete time nonautonomous ratio-dependent predator-prey system. Math. Comput. Modelling 35 (2002), 951-961. DOI 10.1016/S0895-7177(02)00062-6 | MR 1910673 | Zbl 1050.39022
[4] Guo, D., Lakshmikantham, V.: Nonlinear Problems in Abstract Cones. Notes and Reports in Mathematics in Science and Engineering 5 Academic Press, Boston (1988). MR 0959889 | Zbl 0661.47045
[5] Li, Y., Lu, L.: Positive periodic solutions of higher-dimensional nonlinear functional difference equations. J. Math. Anal. Appl. 309 (2005), 284-293. DOI 10.1016/j.jmaa.2005.01.038 | MR 2154042 | Zbl 1079.39009
[6] Ma, R., Ma, H.: Existence of sign-changing periodic solutions of second order difference equations. Appl. Math. Comput. 203 (2008), 463-470. DOI 10.1016/j.amc.2008.05.125 | MR 2458964 | Zbl 1186.39018
[7] Raffoul, Y. N.: Positive periodic solutions of nonlinear functional difference equations. Electron. J. Differ. Equ. (electronic only) 2002 (2002), Paper No. 55. MR 1911922 | Zbl 1007.39005
[8] Wang, W., Chen, X.: Positive periodic solutions for higher order functional difference equations. Appl. Math. Lett. 23 (2010), 1468-1472. DOI 10.1016/j.aml.2010.08.013 | MR 2718532 | Zbl 1205.39016
[9] Zhang, R. Y., Wang, Z. C., Chen, Y., Wu, J.: Periodic solutions of a single species discrete population model with periodic harvest/stock. Comput. Math. Appl. 39 (2000), 77-90. DOI 10.1016/S0898-1221(99)00315-6 | MR 1729420 | Zbl 0970.92019
[10] Zhu, L., Li, Y.: Positive periodic solutions of higher-dimensional functional difference equations with a parameter. J. Math. Anal. Appl. 290 (2004), 654-664. DOI 10.1016/j.jmaa.2003.10.014 | MR 2033049 | Zbl 1042.39005
Partner of
EuDML logo