[1] Čap, A., Slovák, J.:
Parabolic geometries, I: Background and General Theory. Mathematical Surveys and Monographs, American Mathematical Society, 2009.
MR 2532439 |
Zbl 1183.53002
[2] Dixmier, J.:
Algebres Enveloppantes. Gauthier-Villars Editeur, Paris–Bruxelles–Montreal, 1974.
Zbl 0308.17007
[5] Humphreys, J. E., Jr., :
Representations of Semisimple Lie Algebras in the BGG Category $ {\mathcal{O}}$. Graduate Studies in Mathematics, vol. 94, American Mathematical Society, 2008.
MR 2428237
[6] Juhl, A.:
Families of conformally covariant differential operators, Q–curvature and holography. Progress in Math., Birkhäuser, 2009.
MR 2521913 |
Zbl 1177.53001
[7] Kobayashi, T.:
Discrete decomposability of the restriction of $A_{\mathfrak{q}}( \lambda )$ with respect to reductive subgroups and its applications. Invent. Math. 117 (1994), 181–205, Part II, Ann. of Math. (2) 147 (1998), 709–729; Part III, Invent. Math. 131 (1998), 229–256.
DOI 10.1007/BF01232239
[8] Kobayashi, T.:
Multiplicity–free theorems of the restriction of unitary highest weight modules with respect to reductive symmetric pairs. Progress in Math, vol. 280, Birkhäuser, 2007, pp. 45–109.
MR 2369496
[10] Kobayashi, T., Ørsted, B., Somberg, P., Souček, V.: Branching laws for Verma modules and applications in parabolic geometry, I. preprint.
[11] Kobayashi, T., Ørsted, B., Somberg, P., Souček, V.: Branching laws for Verma modules and applications in parabolic geometry, II. preprint.
[12] Kostant, B.: Verma modules and the existence of quasi–invariant differential operators. Lecture Notes in Math., Springer Verlag, 1974, pp. 101–129.
[15] Milev, T., Somberg, P.:
The branching problem for generalized Verma modules, with application to the pair $(\operatorname{so}(7), \operatorname{Lie}\, G_2)$.
http://xxx.lanl.gov/abs/1209.3970