[1] Abramowitz M., Stegun I. A.:
Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Tenth Edition, National Bureau of Standards, 1972.
Zbl 0543.33001
[2] Airey, J. R., Irwin, J. O., Fisher, R. A.: Introduction to Tables of $Hh$ Functions. British Association for the Advancement of Science, Mathematical Tables 1, XXIV–XXXV, 1931.
[3] Benton D., Krishnamoorthy K.:
Computing discrete mixtures of continuous distributions: noncentral chisquare, noncentral $t$ and the distribution of the square of the sample multiple correlation coefficient. Computational Statistics & Data Analysis 43 (2003), 249–267.
DOI 10.1016/S0167-9473(02)00283-9 |
MR 1985338
[5] Guenther, W. C.:
Evaluation of probabilities for the noncentral distributions and the difference of two $t$ variables with a desk calculator. Journal of Statistical Computation and Simulation 6 (1978), 199–206.
DOI 10.1080/00949657808810188
[6] Hahn, G. J., Meeker, G. J.:
Statistical Intervals: A Guide for Practitioners. John Wiley & Sons, New York, 1991.
Zbl 0850.62763
[7] Holoborodko P.:
Multiprecision Computing Toolbox for MATLAB. Advanpix, Yokohama. Edition: Version 3.4.3, 2013
http://www.advanpix.com
[8] Inglot, T.:
Inequalities for quantiles of the chi-square distribution. Probability and Mathematical Statistics 30 (2010), 339–351.
MR 2792589 |
Zbl 1231.62092
[10] Janiga, I., Garaj, I.: One-sided tolerance factors of normal distributions with unknown mean and variability. Measurement Science Review 8 (2006), 12–16.
[11] Johnson, N. L., Kotz, S., Balakrishnan, N.:
Continuous Univariate Distributions, Volume 2. Second Edition, John Wiley & Sons, New York, 1995.
MR 1326603
[12] Kim, J.:
Efficient Confidence Inteval Methodologies for the Noncentrality Parameters of the Noncentral $T$-Distributions. PhD Thesis, H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, 2007.
MR 2710174
[13] Krishnamoorthy, K., Mathew, T.:
Statistical Tolerance Regions: Theory, Applications, and Computation. John Wiley & Sons, New York, 2009.
MR 2500599
[14] Lenth, R. V.:
Algorithm AS 243 – Cumulative distribution function of the non-central $t$ distribution. Applied Statistics 38 (1989), 185–189.
DOI 10.2307/2347693
[15] Maddock, J., Bristow, P. A., Holin, H., Zhang, X., Lalande, B., Rade, J., Sewani, G., van den Berg, T., Sobotta, B.:
Noncentral $T$ Distribution. Boost C++ Libraries, Edition: Version 1.53.0, 2012
http://www.boost.org
[16] The MathWorks Inc.:
MATLAB Edition: Version 8.0.0.783 (R2012b). Natick, Massachusetts, 2012
http://www.mathworks.com
[17] R Development Core Team.:
R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Edition: Version 3.0.0, Vienna, Austria, 2013
http://www.R-project.org
[18] SAS Institute Inc.:
PROBT Function. SAS(R) 9.3 Functions and CALL Routines: Reference. 2013
http://support.sas.com/