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Abstract

The noncentral t-distribution is a generalization of the Student’s
t-distribution. In this paper we suggest an alternative approach for com-
puting the cumulative distribution function (CDF) of the noncentral
t-distribution which is based on a direct numerical integration of a well
behaved function. With a double-precision arithmetic, the algorithm pro-
vides highly precise and fast evaluation of the extreme tail probabili-
ties of the noncentral t-distribution, even for large values of the non-
centrality parameter δ and the degrees of freedom ν. The implementation
of the algorithm is available at the MATLAB Central, File Exchange:
www.mathworks.com/matlabcentral/fileexchange/41790-nctcdfvw.
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1 Introduction

The noncentral t-distribution, originally derived by R.A. Fisher [2], is a gener-
alization of the Student’s t-distribution [19]. Let Z be a random variable with
a standard normal distribution, i.e. Z ∼ N(0, 1), and let Q be an independent
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chi-square distributed random variable with ν degrees of freedom, i.e. Q ∼ χ2
ν

with ν > 0. Further, let δ denote any real constant (the noncentrality parame-
ter), then the probability distribution of the random variable

T =
Z + δ√
Q/ν

, (1.1)

is called a noncentral t-distribution with ν degrees of freedom and noncentrality
parameter δ, or simply written, T ∼ tν,δ. If δ = 0 the noncentral t-distribution
coincides with the central t-distribution.
The central as well as the noncentral t-distributions belong to the most

frequently used distributions in statistics. The cumulative distribution function
(CDF) of the noncentral t-distribution is used in the power analysis (as a part of
statistical inference based on the normal linear models), see e.g. [11], including
t-test as a special case. That is, the CDF of the noncentral t-distribution is
used to evaluate the probability that a t-test will correctly reject a false null
hypothesis on mean of a normal population N(μ, σ2), i.e. the test of the null
hypothesis H0 : μ ≤ μ0 against the alternative HA : μ > μ0 based on small
sample from this population, when the population mean μ is actually greater
than μ0; that is, it gives the power of the t-test.
Broad applicability of the noncentral t-distribution is also in engineering,

measurement science and metrology, quality control applications, as well as in
financial mathematics. An interesting problem with important applications is
derivation of the exact confidence interval for the noncentrality parameter δ
based upon a random sample from the normal distribution, or an equivalent
problem of derivation of the confidence bounds for the coefficient of variation
cV = σ

μ , see e.g. [12]. The noncentral t-distribution is also used for calculat-
ing the endpoints of the one-sided tolerance intervals (the tolerance limits) for
a normal population. An application of tolerance intervals to manufacturing
involves comparing specification limits prescribed by the client with tolerance
limits that cover a specified proportion of the population. The required values
of the tolerance factors can be computed using the quantiles of the noncen-
tral t-distribution. For more details on statistical tolerance intervals and the
one-sided tolerance limits see e.g. [6, 13, 10].
The mathematical expressions for the CDF and the PDF (probability den-

sity function) of the noncentral t are rather complicated. There is not known
closed form (analytical) expression of the CDF. So, it is typically given as a series
expansion in terms of incomplete beta functions and/or other special functions.
A comprehensive list of useful mathematical expressions and alternative repre-
sentations can be found e.g. in [11].
Algorithms for numerical computation of the CDF, PDF, and the quantiles

of the noncentral t-distribution are available in numerical libraries (e.g. BOOST
C++ Libraries [15]), and different implementations are typically available also in
standard statistical packages and/or programming environments (e.g. MATLAB
[16], R [17], SAS [18], and Mathematica [20]).
However, applicability of the currently used implementations could be lim-

ited with respect to the speed and/or precision. This is true especially if
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the interest is in highly precise evaluation of the extreme tail probabilities of
t-distributions with large values of the noncentrality parameter δ and/or the
degrees of freedom ν.
The aim of this paper is to provide a brief overview of the basic properties

of the noncentral t-distribution, useful for numerical evaluation of the CDF and
PDF (consequently also for evaluation of the quantiles of the distribution), and
comparisons of the current implementations, especially if used for evaluation of
the extreme tail probabilities with large values of the noncentrality parameter.
As an alternative, we have developed a new algorithm based on direct nu-

merical integration (by using standard Gauss–Kronod quadrature) of a well
behaved function which leads to highly precise and fast evaluation of the CDF
for any combination of the input parameters x, ν, and δ.

2 The noncentral t-distribution

Here we shall briefly summarize some of the known properties of the noncentral
t-distribution useful for numerical evaluation of the CDF, for more details see
e.g. [1] and [11].

Proposition 1 Let Ftν,δ (x) = Pr(T ≤ x) be the CDF of the random variable
T ∼ tν,δ, defined by (1.1) for any real x, δ and ν > 0. Then the following
properties hold true:

1. If x = 0, then
Ftν,δ (x) = Φ(−δ), (2.1)

where Φ(·) is the CDF of standard normal distribution.
2a. If x > 0, then

Ftν,δ (x) =

∫ ∞

0

Φ

(
x

√
q

ν
− δ

)
fχ2

ν
(q) dq, (2.2)

where fχ2
ν
(·) is the PDF of chi-square distribution with ν degrees of free-

dom.

2b. If x > 0, then

Ftν,δ (x) = Φ(−δ) +

∫ ∞

−δ

(
1− Fχ2

ν

(
ν(z + δ)2

x2

))
φ(z) dz

= Φ(−δ) +

∫ ∞

−δ

Γu

(
ν

2
,
ν(z + δ)2

2x2

)
φ(z) dz

= 1−
∫ ∞

−δ

Γl

(
ν

2
,
ν(z + δ)2

2x2

)
φ(z) dz, (2.3)

where Fχ2
ν
(·) is the CDF of chi-squared distribution with ν degrees of free-

dom, φ(·) is the PDF of standard normal distribution, Γu(·, ·) (resp. Γl(·, ·))
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denotes the upper (lower) regularized incomplete gamma function, i.e.

Γu(a, x) =
1

Γ(a)

∫ ∞

x

e−tta−1 dt, (2.4)

Γl(a, x) = 1− Γu(a, x), and Γ(·) is the gamma function.
2c. If x > 0, then

Ftν,δ (x) = Φ(−δ) +
1

2

∞∑
i=0

{
PiIy

(
i+

1

2
,
ν

2

)
+

δ√
2
QiIy

(
i+ 1,

ν

2

)}
,

(2.5)
where

Pi =
(δ2/2)i

i!
e−

δ2

2 , Qi =
(δ2/2)i

Γ(i+ 3/2)
e−

δ2

2 , y =
x2

ν + x2
, (2.6)

and Iy(a, b) is the incomplete beta function.

3. If x < 0, then

Ftν,δ (x) = 1− Ftν,−δ
(−x). (2.7)

Proof The CDF representation given in (2.5) has been proved by Guenther
in [5]. The other properties can be derived directly from the definition of the
noncentral t-variable (1.1). In particular,

Ftν,δ (0) = Pr(T ≤ 0) = Pr

(
Z + δ√
Q/ν

≤ 0

)
= Pr (Z ≤ −δ) = Φ(−δ). (2.8)

If x > 0, then we get

Ftν,δ (x) = Pr(T ≤ x) = Φ(−δ) + Pr(0 < T ≤ x)

= Φ(−δ) + Pr

(
−δ < Z ≤ x

√
Q

ν
− δ

)

= Φ(−δ) + EQ

(
Φ

(
x

√
Q

ν
− δ

))
− Φ(−δ)

= EQ

(
Φ

(
x

√
Q

ν
− δ

))
=

∫ ∞

0

Φ

(
x

√
q

ν
− δ

)
fχ2

ν
(q) dq, (2.9)

where Q ∼ χ2
ν , fχ2

ν
(·) is the PDF of χ2

ν-distribution, and EQ(·) denotes the
expectation operator (with respect to the distribution of a random variable Q).
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Similarly, we get

Ftν,δ (x) = Φ(−δ) + Pr

(
−δ < Z ≤ x

√
Q

ν
− δ

)

= Φ(−δ) + Pr

(
Z ≤ x

√
Q

ν
− δ, Z > −δ

)

= Φ(−δ) + Pr

(
ν(Z + δ)2

x2
≤ Q,Z > −δ

)

= Φ(−δ) +

∫ ∞

−δ

(
1− Fχ2

ν

(
ν(Z + δ)2

x2

))
φ(z) dz

= Φ(−δ) +

∫ ∞

−δ

Γu

(
ν

2
,
ν(z + δ)2

2x2

)
φ(z) dz

= 1−
∫ ∞

−δ

Γl

(
ν

2
,
ν(z + δ)2

2x2

)
φ(z) dz (2.10)

where Fχ2
ν
(q) = Γl

(
ν
2 ,

q
2

)
= 1−Γu

(
ν
2 ,

q
2

)
is the CDF of chi-squared distribution

with ν degrees of freedom, and Γl

(
ν
2 ,

q
2

)
(resp. Γu

(
ν
2 ,

q
2

)
) denotes the lower

(upper) regularized incomplete gamma function, and φ(·) is the PDF of standard
normal distribution. Note that the representation holds true also for noninteger
degrees of freedom, ν > 0. Finally, if x < 0, we get

Ftν,δ (x) = Pr(T ≤ x) = Pr

(
Z + δ√
Q/ν

≤ x

)
= Pr

(
−Z − δ√

Q/ν
> −x

)

= 1− Pr

(
Z − δ√
Q/ν

≤ −x

)
= 1− Ftν,−δ

(−x), (2.11)

by using the symmetry of the distribution of the random variable Z ∼ N(0, 1).
�

The CDF Ftν,δ (·) can be directly used for computing the PDF of the non-
central t distribution, ftν,δ (·), defined by ftν,δ (x) = ∂Ftν,δ (x)/∂x. In particular,
the following holds true:

• If x = 0, then

ftν,δ (x) =
Γ
(
ν+1
2

)
√
πν Γ

(
ν
2

) e− δ2

2 . (2.12)

• If x �= 0, then

ftν,δ (x) =
ν

x

{
Ftν+2,δ

(
x

√
1 +

2

ν

)
− Ftν,δ (x)

}
. (2.13)
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Based on that, the quantiles of the noncentral t-distribution, say xp, can
be calculated for any given p ∈ (0, 1). In general, for any fixed combination of
the three parameters (from the set ν, δ, x, p), the remaining parameter can be
calculated either directly, or via the usual root-finding techniques, by solving
the equation Ftν,δ (x) = p.

3 Standard implementations for computing CDF of the
noncentral t-distribution

The standard algorithm implementations for computing the CDF of the non-
central t-distribution are based on its representation (2.5), which was originally
derived by Guenther [5] and later implemented by Lenth [14].
Due to the recurrence properties of the incomplete beta function, the algo-

rithm requires only two evaluations of Iy(a, b) and the rest is based on simple
arithmetic operations. For most typical values of the input arguments x, ν, and
δ, the algorithm is extremely fast and accurate.
The R implementation (function pt in [17]) is based on C version of the

Lenth’s algorithm with a restricted range of the noncentrality parameter, |δ| ≤
37.62. Otherwise, the result is based on normal approximation,

Ftν,δ (x) = Φ(z), where z =
x(1− 1

4ν )− δ√
1 + x2

2ν

, (3.1)

see [1, eqn. (26.7.10), p. 949], which can be rather poor for small ν.
Algorithm based on (2.5) have been implemented also in MATLAB (function

nctcdf in [16]) and in the BOOST C++ Libraries (function non central t in [15],
see also [4]). The BOOST implementation is based on strategies suggested by
Benton and Krishnamoorthy [3].
The BOOST function non central t has been tested for wide range of input

parameters and compared with test data computed by arbitrary precision inter-
val arithmetic (believed to be accurate to at least 50 decimal places, as declared
in [15], and confirmed by a large test data set, kindly provided by J. Maddock
[personal communication]). As the complexity of the algorithm based on the
series expansion as given in (2.5) is dependent upon δ2, consequently, the time
taken to evaluate the CDF increases rapidly for large noncentrality parameter,
|δ| > 500, likewise the accuracy decreases rapidly for very large δ, see [15].
Moreover, unlike the R and MATLAB implementations, which compute cor-

rectly only the lower tail of the distribution, the BOOST algorithm computes
also the upper tail of the distribution (which is important for correct evaluation
of the extreme tail probabilities).
As presented in [18], SAS implementation (function probt) is based on nu-

merical integration of the representation (2.2). For most typical values of the
input arguments x, ν, and δ, the algorithm is fast and accurate (for most cases,
typically all 14 reported significant digits are correct). However, for more ex-
treme input arguments the algorithm may fail to converge to the prescribed
accuracy, and in such case no output is provided by the function probt.
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Implementation in Mathematica (function CDF[NoncentralStudentTDistri-
bution[ν, δ], x] in [20]) is based on numerical integration (computed using Math-
ematica’s high-precision arithmetic) of the noncentral t PDF function (which is
given as an analytical function expressible by using the Hermite polynomials).
The computational complexity of this algorithm quickly grows with large ν and
δ and in such cases fail to converge.

4 Algorithm nctcdfvw based on direct numerical integra-
tion

As an alternative, here we suggest a new algorithm based on direct numerical in-
tegration (by using standard Gauss-Kronod quadrature) of a well behaved func-
tion, based on expression (2.3), which leads to highly precise and fast evaluation
of the CDF for any combination of the input parameters x, ν, and δ. The algo-
rithm has been implemented in MATLAB and its current version is available at
the MATLABCentral, File Exchange: http://www.mathworks.com/matlabcentral/
fileexchange/41790-nctcdfvw.
The algorithm computes the lower tail, i.e.

Pr(T ≤ x) = Φ(−δ) +

∫ ∞

−δ

Γu

(
ν

2
,
ν(z + δ)2

2x2

)
φ(z) dz, (4.1)

if 0 < x ≤ δ, otherwise, for x > 0 and such that x > δ, it computes the upper
tail of the distribution,

Pr(T > x) =

∫ ∞

−δ

Γl

(
ν

2
,
ν(z + δ)2

2x2

)
φ(z) dz. (4.2)

Notice that in a double-precision arithmetic the integration range (−δ,∞)
can be reduced to the limits [A0, B0] given by

[A0, B0] = [max(−δ,Φ−1(rε0)),−Φ−1(rε0)], (4.3)

where rε0 is the minimum real non-zero number (the smallest positive normal-
ized floating point number in IEEE double precision), i.e. rε0 = 2.2251×10−308.
So, Φ−1(rε0) = −37.5194.
The most important part of the algorithm is the method for subsequent

(significant) reduction of the integration range [A0, B0]. For simplicity, we shall
illustrate this only for the case of computing the lower tail of the distribution.

Notice that Γu(
ν
2 ,

ν(z+δ)2

2x2 ) approaches the value 1 for small values of z (z →
−δ) and 0 for large values of z (z → +∞). If

Γu

(
ν

2
,
ν(z + δ)2

2x2

)
> 1− εR (4.4)

for A0 ≤ z ≤ A1, where

A1 =

√
x2qεR
ν

− δ, (4.5)



138 Viktor Witkovský

with qεR being the εR-quantile of the χ
2
ν-distribution (for qεR ≈ 0 set qεR = 0),

where εR is the required relative tolerance bound (in double-precision arithmetic
we set εR = 10−16), then the integration range can be further reduced to

[A1, B1] = [max(A0, A1), B0], (4.6)

and the CDF is approximated by

Pr(T ≤ x) ≈ Φ(A1) +

∫ B1

A1

Γu

(
ν

2
,
ν(z + δ)2

2x2

)
φ(z) dz (4.7)

Further reduction of the integration range [A1, B1] is possible since the in-
tegrand function

g(z) = Γu

(
ν

2
,
ν(z + δ)2

2x2

)
φ(z) (4.8)

(typically) quickly fades out from its maximum value. For illustration, Fig. 1
presents a typical graph of the integrand function g(z), together with the opti-
mally selected integration limits.
Based on that, further reduction of the integration range is given, and the

final integration limits are given by

[A,B] = [max(A1, A2),min(B1, B2)], (4.9)

where the limits A2 and B2 are given as the two possible solutions to the equa-
tion

g(A2) = g(B2) = εA, (4.10)

where εA denotes the required absolute tolerance bound (which should be prop-
erly estimated, see bellow).
The integrand function g(z) defined by (4.8) and its modus can be effectively

estimated based on the results and efficient approximations of the CDF and the
quantiles of the chi-square distribution, as suggested by Inglot in [8].

In particular, let us denote q = ν(z+δ)2

x2 and h(z) = log(g(z)). Then, by using
the lower bound for tails of the χ2

ν-distribution, as derived in [8] and [9], i.e.

1

2
Eν(q) ≤ Pr(χ2

ν > q) ≤ 1√
π

q

q − ν + 2
Eν(q), (4.11)

where

Eν(q) = exp

{
−1

2

(
q − ν − (ν − 2) log

( q
ν

)
+ log(ν)

)}
, (4.12)

we get

h(z) ≈ log

(
1

2
Eν(q)φ(z)

)

≈ − log(2)− 1

2

(
q − ν − (ν − 2) log

( q
ν

)
+ log(ν) + log(2π) + z2

)
,(4.13)
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Figure 1: The integrand function g(z) evaluated at the Gauss-Kronod nodes
(90 = 6 subintervals × 15 nodes) and the selected integration limits [A,B]
used for computing the CDF of the noncentral t-distribution with the in-
put parameters x = 5, ν = 100 and δ = 15. The value of CDF com-
puted by the algorithm nctcdfvw is CDF = 2.640405806735035 × 10−21.
For comparison, the standard MATLAB function nctcdf (Statistics Tool-
box) returns CDF = 4.542511227039881 × 10−43, the R function pt re-
turns CDF = 2.35515251660662 × 10−21, the SAS function probt returns
CDF = 2.6404058074408 × 10−21, and the BOOST function non central t re-
turns CDF = 2.64040580673507× 10−21.

which holds true for all q (and consequently for all z) and ν > 2. For practical
purposes, the algorithm sets ν − 2 ≡ 1 if ν ≤ 2.
By solving the equation ∂h(z)

∂z = 0 we get the estimate of the mode (modus),
say zmod, of the integrand function g(z) as

zmod =
−δ(x2 + 2ν) + x

√
4ν(ν − 2) + x2(δ2 + 4(ν − 2))

2 (x2 + ν)
. (4.14)

Based on that, we can estimate the maximum value of the integrand function
by

gmax ≈ g(zmod) ≈ exp (h(zmod)) , (4.15)

and also the required absolute tolerance bound εA, by solving

log (εA) ≈ h(zmod) + log (εR) . (4.16)
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Consequently, the limits A2 andB2 defined by (4.10) can be estimated by solving
the approximate equation

h(A2) = h(B2) = log(εA). (4.17)

The algorithm nctcdfvw finds the limits A2 and B2 by solving quadratic equa-
tion which results from the quadratic approximation (expansion) of the function
h(·) around zmod.
The quantiles qεR used in (4.5) are estimated by using efficient approximation

proposed in [8], eqn. (A.3),

qεR ≈ ν + 2εR + 1.62
√
νεR + 0.63012

√
ν log(εR)

−1.12032
√
ν − 2.48

√
εR − 0.65381 log(εR)− 0.22872. (4.18)

Given the integration limits [A,B], the algorithm evaluates the CDF by
using the approximation

Ftν,δ (x) ≈ Φ(A) +

∫ B

A

g(z) dz (4.19)

The integral
∫ B

A
g(z) dz can be evaluated by using the standard (adaptive)

Gauss–Kronod quadrature which allows to estimate the integration error.
In order to speed-up the computation by using evaluation of the vector-

ized functions, the MATLAB version of the algorithm nctcdfvw uses the non-
adaptive version of the (G7,K15)-Gauss–Kronod quadrature over fixed (prespec-
ified) number of sub-intervals of [A,B]. The default number of sub-intervals is
set to nsubs = 16 (a rather conservative choice based on a detailed and extensive
testing, in order to ensure the relative precision to be better than (or equal to)
10−14, in most cases), but for most typical values of the input parameters divi-
sion to 6 sub-intervals (which requires 90 = 6× 15 evaluations of the integrand
function g(z)) is sufficient to achieve the relative error less than 10−12.

5 Accuracy comparisons

In order to illustrate and compare the accuracy of the standard algorithms/
implementations for computing the noncentral t distribution (and to compare
it with the suggested algorithm based on the expression (2.3)), Table 1 presents
the CDF values of the noncentral t distribution for several (rather extreme)
combinations of input parameters x, ν, and δ, computed by different algo-
rithms/implementations. In particular,

• MATLAB function nctcdfvw (based on non-adaptive Gauss–Kronod quadra-
ture, here with integration limits [A,B] divided into 32 subintervals),

• MATLAB function nctcdf (Statistics Toolbox),
• R function pt,
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• SAS function probt,
• BOOST C++ Libraries function non central t, as implemented in
DistExplorer,

• MATHEMATICA function CDF[NoncentralStudentTDistribution].
The ‘true’ values of the CDF have been computed by a version of the MAT-

LAB algorithm nctcdfvw (modified for quadruple-precision computation by us-
ing the Multiprecision Computing Toolbox for MATLAB [7]).
All computations have been realized on standard PC under 32-bit Windows

XP operating system. For detailed comparisons, the results are presented with
18 significant digits. Notice however, that the double-precision arithmetic (used
by the presented algorithms, except Mathematica) returns only 16 significant
digits.
The differences (with respect to the exact values) are emphasized by un-

derlining the affected digits. The ‘NA’ value is displayed if the algorithm did
not converge. A symbol ‘*’ is displayed for cases when Mathematica warning
message ‘NIntegrate failed to converge to prescribed accuracy’ has been issued.

6 Conclusions

It seems that (currently) there is no implementation of the algorithm for com-
puting CDF of the noncentral t-distribution which is uniformly efficient (reason-
ably fast) and accurate for all input parameters x, ν, and δ in double-precision
arithmetic.
According to our present study, this goal is best satisfied by the SAS and

BOOST implementations, if we restrict to the typical (most frequently used)
values of the input parameters. However, when the output of such algorithm is
supposed to be used subsequently for further computations, as e.g. computing
the PDF or quantiles of the distribution (and/or the noncentrality parameter δ,
or the degrees of freedom ν, for given values x and the CDF/PDF), the possible
inaccuracy, slow evaluation or failure to converge, can be critical.
Here we have suggested a new algorithm based on numerical quadrature of

a well behaved function which is reasonably precise and fast in double-precision
arithmetic for all input parameters x, ν and δ. Precision of the MATLAB version
of the algorithm was tested for wide range of input parameters (not presented
here). In most of the tested cases the relative error was bellow 10−14.

Ackowledgement The author wishes to thank two anonymous referees for
identifying the errors in original version of the manuscript and for their con-
structive comments which helped to improve presentation of the paper.
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Table 1: CDF values of the noncentral t-distribution computed by different
algorithms/implementations for selected combinations of the input parameters.
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