Previous |  Up |  Next

Article

Keywords:
monotonicity; oscillatory solutions
Summary:
We obtain monotonicity results concerning the oscillatory solutions of the differential equation $(a(t)\vert y^{\prime }\vert ^{p-1}y^{\prime })^{\prime }+f(t,y,y^{\prime })=0$. The obtained results generalize the results given by the first author in [1] (1976). We also give some results concerning a special case of the above differential equation.
References:
[1] Bartušek, M.: Monotonicity theorems concerning differential equations $y^{\prime \prime }+f(t,y,y^{\prime })=0$. Arch. Math. (Brno) 12 (4) (1976), 169–178. MR 0430410
[2] Bartušek, M.: Monotonicity theorems for second order non-linear differential equations. Arch. Math. (Brno) 16 (3) (1980), 127–136. MR 0594458
[3] Bartušek, M.: On properties of oscillatory solutions of nonlinear differential equations of the $n$-th order. Diff. Equat. and Their Appl., Equadiff 6, vol. 1192, Lecture Notes in Math., Berlin, 1985, pp. 107–113.
[4] Bartušek, M.: On oscillatory solutions of differential inequalities. Czechoslovak Math. J. 42 (117) (1992), 45–52. MR 1152168 | Zbl 0756.34033
[5] Bartušek, M.: Singular solutions for the differential equation with $p$-Laplacian. Arch. Math. (Brno) 41 (2005), 123–128. MR 2142148 | Zbl 1116.34325
[6] Bartušek, M., Došlá, Z., Cecchi, M., Marini, M.: On oscillatory solutions of quasilinear differential equations. J. Math. Anal. Appl. 320 (2006), 108–120. DOI 10.1016/j.jmaa.2005.06.057 | MR 2230460 | Zbl 1103.34016
[7] Došlá, Z., Cecchi, M., Marini, M.: On second order differential equations with nonhomogenous $\Phi $–Laplacian. Boundary Value Problems 2010 (2010), 17pp., ID 875675. MR 2595170
[8] Došlá, Z., Háčik, M., Muldon, M. E.: Further higher monotonicity properties of Sturm-Liouville function. Arch. Math. (Brno) 29 (1993), 83–96. MR 1242631
[9] Došlý, O., Řehák, P.: Half-linear differential equations. Elsevier, Amsterdam, 2005. MR 2158903 | Zbl 1090.34001
[10] Kiguradze, I., Chanturia, T.: Asymptotic properties of solutions of nonautonomous ordinary differential equations. Kluwer, Dordrecht, 1993. Zbl 0782.34002
[11] Lorch, L., Muldon, M. E., Szego, P.: Higher monotonicity of certain Sturm-Liouville functions III. Canad. J. Math. 22 (1970), 1238–1265. DOI 10.4153/CJM-1970-142-1 | MR 0274845
[12] Mirzov, J. D.: Asymptotic properties of solutions of systems of nonlinear nonautonomous ordinary differential equations. Folia Fac. Sci. Natur. Univ. Masaryk. Brun. Math., Masaryk University, Brno, 2001. MR 2144761
[13] Naito, M.: Existence of positive solutions of higher-order quasilinear ordinary differential equations. Ann. Mat. Pura Appl. (4) 186 (2007), 59–84. MR 2263331 | Zbl 1232.34054
[14] Rohleder, M.: On the existence of oscillatory solutions of the second order nonlinear ODE. Acta Univ. Palack. Olomuc. Fac. Rerum Natur. Math. 51 (2) (2012), 107–127. MR 3058877 | Zbl 1279.34050
Partner of
EuDML logo