[1] Bartušek, M.:
Monotonicity theorems concerning differential equations $y^{\prime \prime }+f(t,y,y^{\prime })=0$. Arch. Math. (Brno) 12 (4) (1976), 169–178.
MR 0430410
[2] Bartušek, M.:
Monotonicity theorems for second order non-linear differential equations. Arch. Math. (Brno) 16 (3) (1980), 127–136.
MR 0594458
[3] Bartušek, M.: On properties of oscillatory solutions of nonlinear differential equations of the $n$-th order. Diff. Equat. and Their Appl., Equadiff 6, vol. 1192, Lecture Notes in Math., Berlin, 1985, pp. 107–113.
[4] Bartušek, M.:
On oscillatory solutions of differential inequalities. Czechoslovak Math. J. 42 (117) (1992), 45–52.
MR 1152168 |
Zbl 0756.34033
[5] Bartušek, M.:
Singular solutions for the differential equation with $p$-Laplacian. Arch. Math. (Brno) 41 (2005), 123–128.
MR 2142148 |
Zbl 1116.34325
[7] Došlá, Z., Cecchi, M., Marini, M.:
On second order differential equations with nonhomogenous $\Phi $–Laplacian. Boundary Value Problems 2010 (2010), 17pp., ID 875675.
MR 2595170
[8] Došlá, Z., Háčik, M., Muldon, M. E.:
Further higher monotonicity properties of Sturm-Liouville function. Arch. Math. (Brno) 29 (1993), 83–96.
MR 1242631
[10] Kiguradze, I., Chanturia, T.:
Asymptotic properties of solutions of nonautonomous ordinary differential equations. Kluwer, Dordrecht, 1993.
Zbl 0782.34002
[11] Lorch, L., Muldon, M. E., Szego, P.:
Higher monotonicity of certain Sturm-Liouville functions III. Canad. J. Math. 22 (1970), 1238–1265.
DOI 10.4153/CJM-1970-142-1 |
MR 0274845
[12] Mirzov, J. D.:
Asymptotic properties of solutions of systems of nonlinear nonautonomous ordinary differential equations. Folia Fac. Sci. Natur. Univ. Masaryk. Brun. Math., Masaryk University, Brno, 2001.
MR 2144761
[13] Naito, M.:
Existence of positive solutions of higher-order quasilinear ordinary differential equations. Ann. Mat. Pura Appl. (4) 186 (2007), 59–84.
MR 2263331 |
Zbl 1232.34054
[14] Rohleder, M.:
On the existence of oscillatory solutions of the second order nonlinear ODE. Acta Univ. Palack. Olomuc. Fac. Rerum Natur. Math. 51 (2) (2012), 107–127.
MR 3058877 |
Zbl 1279.34050