Previous |  Up |  Next

Article

Keywords:
left-invariant control system; (detached) feedback equivalence; affine subspace; solvable Lie algebra
Summary:
We seek to classify the full-rank left-invariant control affine systems evolving on solvable three-dimensional Lie groups. In this paper we consider only the cases corresponding to the solvable Lie algebras of types II, IV, and V in the Bianchi-Behr classification.
References:
[1] Agrachev, A. A., Sachkov, Y. L.: Control Theory from the Geometric Viewpoint. Springer Verlag, 2004. MR 2062547 | Zbl 1062.93001
[2] Biggs, R., Remsing, C. C.: On the equivalence of control systems on Lie groups. submitted.
[3] Biggs, R., Remsing, C. C.: A category of control systems. An. Ştiinţ. Univ. Ovidius Constanţa Ser. Mat. 20 (1) (2012), 355–368. MR 2928428 | Zbl 1274.93062
[4] Biggs, R., Remsing, C. C.: A note on the affine subspaces of three–dimensional Lie algebras. Bul. Acad. Ştiinţe Repub. Mold. Mat. no. 3 (2012), 45–52. MR 3155842
[5] Biggs, R., Remsing, C. C.: Control affine systems on semisimple three–dimensional Lie groups. An. Ştiinţ. Univ. Al. I. Cuza Iaşi Mat. (N.S.) 59 (2) (2013), 399–414.
[6] Biggs, R., Remsing, C. C.: Control affine systems on solvable three–dimensional Lie groups, II. to appear in Note Mat. 33 (2013). MR 3178571 | Zbl 1287.93022
[7] Ha, K. Y., Lee, J. B.: Left invariant metrics and curvatures on simply connected three–dimensional Lie groups. Math. Nachr. 282 (6) (2009), 868–898. DOI 10.1002/mana.200610777 | MR 2530885 | Zbl 1172.22006
[8] Harvey, A.: Automorphisms of the Bianchi model Lie groups. J. Math. Phys. 20 (2) (1979), 251–253. DOI 10.1063/1.524073 | MR 0519209
[9] Jakubczyk, B.: Equivalence and Invariants of Nonlinear Control Systems. Nonlinear Controllability and Optimal Control (Sussmann, H. J., ed.), M. Dekker, 1990, pp. 177–218. MR 1061386 | Zbl 0712.93027
[10] Jurdjevic, V.: Geometric Control Theory. Cambridge University Press, 1977. MR 1425878
[11] Jurdjevic, V., Sussmann, H. J.: Control systems on Lie groups. J. Differential Equations 12 (1972), 313–329. DOI 10.1016/0022-0396(72)90035-6 | MR 0331185 | Zbl 0237.93027
[12] Knapp, A. W.: Lie Groups beyond an Introduction. Progress in Mathematics, Birkhäuser, second ed., 2004. MR 1399083
[13] Krasinski, A., et al., : The Bianchi classification in the Schücking–Behr approach. Gen. Relativity Gravitation 35 (3) (2003), 475–489. DOI 10.1023/A:1022382202778 | MR 1964375 | Zbl 1016.83004
[14] MacCallum, M. A. H.: On the Classification of the Real Four–Dimensional Lie Algebras. On Einstein's Path: Essays in Honour of E. Schücking (Harvey, A., ed.), Springer Verlag, 1999, pp. 299–317. MR 1658911 | Zbl 0959.17003
[15] Popovych, R. O., Boyco, V. M., Nesterenko, M. O., Lutfullin, M. W.: Realizations of real low–dimensional Lie algebras. J. Phys. A: Math. Gen. 36 (2003), 7337–7360. DOI 10.1088/0305-4470/36/26/309 | MR 2004893
[16] Remsing, C. C.: Optimal control and Hamilton–Poisson formalism. Int. J. Pure Appl. Math. 59 (1) (2001), 11–17. MR 2642777
Partner of
EuDML logo