[1] Agrachev, A. A., Sachkov, Y. L.:
Control Theory from the Geometric Viewpoint. Springer Verlag, 2004.
MR 2062547 |
Zbl 1062.93001
[2] Biggs, R., Remsing, C. C.: On the equivalence of control systems on Lie groups. submitted.
[3] Biggs, R., Remsing, C. C.:
A category of control systems. An. Ştiinţ. Univ. Ovidius Constanţa Ser. Mat. 20 (1) (2012), 355–368.
MR 2928428 |
Zbl 1274.93062
[4] Biggs, R., Remsing, C. C.:
A note on the affine subspaces of three–dimensional Lie algebras. Bul. Acad. Ştiinţe Repub. Mold. Mat. no. 3 (2012), 45–52.
MR 3155842
[5] Biggs, R., Remsing, C. C.: Control affine systems on semisimple three–dimensional Lie groups. An. Ştiinţ. Univ. Al. I. Cuza Iaşi Mat. (N.S.) 59 (2) (2013), 399–414.
[6] Biggs, R., Remsing, C. C.:
Control affine systems on solvable three–dimensional Lie groups, II. to appear in Note Mat. 33 (2013).
MR 3178571 |
Zbl 1287.93022
[9] Jakubczyk, B.:
Equivalence and Invariants of Nonlinear Control Systems. Nonlinear Controllability and Optimal Control (Sussmann, H. J., ed.), M. Dekker, 1990, pp. 177–218.
MR 1061386 |
Zbl 0712.93027
[10] Jurdjevic, V.:
Geometric Control Theory. Cambridge University Press, 1977.
MR 1425878
[12] Knapp, A. W.:
Lie Groups beyond an Introduction. Progress in Mathematics, Birkhäuser, second ed., 2004.
MR 1399083
[14] MacCallum, M. A. H.:
On the Classification of the Real Four–Dimensional Lie Algebras. On Einstein's Path: Essays in Honour of E. Schücking (Harvey, A., ed.), Springer Verlag, 1999, pp. 299–317.
MR 1658911 |
Zbl 0959.17003
[15] Popovych, R. O., Boyco, V. M., Nesterenko, M. O., Lutfullin, M. W.:
Realizations of real low–dimensional Lie algebras. J. Phys. A: Math. Gen. 36 (2003), 7337–7360.
DOI 10.1088/0305-4470/36/26/309 |
MR 2004893
[16] Remsing, C. C.:
Optimal control and Hamilton–Poisson formalism. Int. J. Pure Appl. Math. 59 (1) (2001), 11–17.
MR 2642777