Previous |  Up |  Next

Article

Keywords:
Lie groupoids; Lie bialgebroids; multiplicative Dirac structures; tangent functor of higher order; natural transformations
Summary:
The tangent lifts of higher order of Dirac structures and some properties have been defined in [9] and studied in [11]. By the same way, the tangent lifts of higher order of Poisson structures have been studied in [10] and some applications are given. In particular, the authors have studied the nature of the Lie algebroids and singular foliations induced by these lifting. In this paper, we study the tangent lifts of higher order of multiplicative Poisson structures, multiplicative Dirac structures and we describe the Lie bialgebroid structures and the algebroid-Dirac structures induced by these prolongations.
References:
[1] Cantrijn, F., Crampin, M., Sarlet, W., Saunders, D.: The canonical isomorphism between $T^{k}T^{\ast }$ and $T^{\ast }T^{k}$. C.R. Acad. Sci. Paris 309 (1989), 1509–1514. MR 1033091
[2] Courant, J.: Dirac manifols. Trans. Amer. Math. Soc. 319 (2) (1990), 631–661. DOI 10.1090/S0002-9947-1990-0998124-1 | MR 0998124
[3] Courant, T.: Tangent Dirac structures. J. Phys. A; Math. Gen. 23 (1990), 5153–5168, printed in theUK. DOI 10.1088/0305-4470/23/22/010 | MR 1085863 | Zbl 0715.58013
[4] Courant, T.: Tangent Lie algebroids. J. Phys. A; Math. Gen. 23 (1994), 4527–4536, printed in the UK. MR 1294955 | Zbl 0843.58044
[5] Gancarzewicz, J., Mikulski, W., Pogoda, Z.: Lifts of some tensor fields and connections to product preserving functors. Nagoya Math. J. 135 (1994), 1–41. MR 1295815 | Zbl 0813.53010
[6] Grabowski, J., Urbanski, P.: Tangent lifts of Poisson and related structures. J.Phys. A: Math. Gen. 28 (1995), 6743–6777. DOI 10.1088/0305-4470/28/23/024 | MR 1381143 | Zbl 0872.58028
[7] Kolář, I.: Functorial prolongations of Lie algebroids. Proceedings Conf. Prague 2004, Charles University, Prague, 2005. MR 2268942 | Zbl 1114.58010
[8] Kolář, I., Michor, P., Slovák, J.: Natural Operations in Differential Geometry. Springer–Verlag, 1993. MR 1202431
[9] Kouotchop Wamba, P. M., Ntyam, A., Wouafo Kamga, J.: Tangent Dirac structures of higher order. Arch. Math. (Brno) 47 (2011), 17–22. MR 2813543 | Zbl 1240.53058
[10] Kouotchop Wamba, P. M., Ntyam, A., Wouafo Kamga, J.: Tangent lifts of higher order of multivector fields and applications. J. Math. Sci. Adv. Appl. 15 (2) (2012), 89–112. MR 3058846
[11] Kouotchop Wamba, P.M., Ntyam, A., Wouafo Kamga, J.: Some properties of tangent Dirac structures of higher order. Arch. Math. (Brno) 48 (3) (2012), 233–241. DOI 10.5817/AM2012-3-233 | MR 2995874 | Zbl 1274.53052
[12] Mackenzie, K., Xu, P.: Lie bialgebroids and Poisson groupoids. Duke Math. J. 73 (2) (1998), 415–452. DOI 10.1215/S0012-7094-94-07318-3 | MR 1262213
[13] Mackenzie, K. C. H.: General theory of Lie groupoids and Lie algebroids. London Math. Soc. Lecture Note Ser. 213, Cambridge Univ. Press, Cambridge, 2005. MR 2157566 | Zbl 1078.58011
[14] Morimoto, A.: Lifting of some type of tensors fields and connections to tangent bundles of $p^{r}$–velocities. Nagoya Math. J. 40 (1970), 13–31. MR 0279720
[15] Ntyam, A., Mba, A.: On natural vector bundle morphisms $T^{A}\circ \bigotimes _{s}^{q}\rightarrow \bigotimes _{s}^{q}\circ T^{A}$ over $id_{T^{A}}$. Ann. Polon. Math. 96 (3) (2009), 295–301. MR 2534175
[16] Ntyam, A., Wouafo Kamga, J.: New versions of curvatures and torsion formulas of complete lifting of a linear connection to Weil bundles. Ann. Polon. Math. 82 (3) (2003), 233–240. DOI 10.4064/ap82-3-4 | MR 2040808
[17] Ortiz, C.: B-Fiel transformations of Poisson groupoids. arXiv: 1107.3343v3 [math. SG], 31 Aug 2011. MR 3087576
[18] Ortiz, C.: Multiplicative Dirac structures on Lie groups. C.R. Acad. Sci. Paris Ser. I 346 (23–24) (2008), 1279–1282. DOI 10.1016/j.crma.2008.10.003 | MR 2473308 | Zbl 1163.53052
[19] Vaisman, I.: Lectures on the geometry of Poisson manifolds. vol. 118, Progress in Mathematics, 1994. MR 1269545 | Zbl 0810.53019
[20] Vaisman, I., Mitric, G.: Poisson structures on tangent bundles. Differential Geom. Appl. 18 (2003), 200–228. MR 1958157 | Zbl 1039.53091
[21] Wouafo Kamga, J.: Global prolongation of geometric objects to some jet spaces. International Centre for Theoretical Physics, Trieste, Italy, 1997.
Partner of
EuDML logo