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TANGENT LIFTS OF HIGHER ORDER
OF MULTIPLICATIVE DIRAC STRUCTURES

P. M. Kouotchop Wamba and A. Ntyam

Abstract. The tangent lifts of higher order of Dirac structures and some
properties have been defined in [9] and studied in [11]. By the same way,
the tangent lifts of higher order of Poisson structures have been studied
in [10] and some applications are given. In particular, the authors have
studied the nature of the Lie algebroids and singular foliations induced
by these lifting. In this paper, we study the tangent lifts of higher order of
multiplicative Poisson structures, multiplicative Dirac structures and we
describe the Lie bialgebroid structures and the algebroid-Dirac structures
induced by these prolongations.

Introduction

We denote by LG and LA the categories of Lie groupoids and Lie algebroids,
respectively. There is a natural functor A : LG → LA, which maps each object
G ∈ LG to the object AG ∈ LA, and every morphism of Lie groupoids
φ : G1 → G2 is mapped to the Lie algebroid morphism Aφ : AG1 → AG2. It
is called the Lie functor and preserves the product bundles. Let G be a Lie
groupoid over a manifold M , we denote by G(2) the set of composable groupoid
pairs and we recall that, a Poisson groupoid is a pair (G; ΠG) where ΠG is a
Poisson structure on G which is multiplicative in the sense that the graph of
the multiplication map

Λ =
{

(g, h, gh) , (g, h) ∈ G(2)
}

is a coisotropic submanifold of G×G×G , where G means that G is equipped
with the opposite Poisson structure. We say that the bivector ΠG is a multipli-
cative bivector. On the other hand, it is well known that Lie bialgebroid is a
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pair of Lie algebroids in duality (E,E∗) satisfying

dE∗ ([u, v]) = [dE∗ (u) , v] + [u, dE∗ (v)]

for any u, v ∈ Γ (E). Here dE∗ : Γ
(∧k

E
)
→ Γ

(∧k+1
E
)

denotes the Lie
algebroid differential induced by E∗ and [·, ·] is the Schouten bracket on multi-
sections of E. A classical example of a Lie bialgebroid is a Lie bialgebra. As
a Lie bialgebras arise as the infinitesimal counterpart of Poisson-Lie groups,
K. Mackenzie and P. Xu have shown that, the Lie bialgebroids are the infini-
tesimal version of Poisson groupoids (see [12]). More precisely, if (G; ΠG) is a
Poisson groupoid, then (AG, A∗G) is a Lie bialgebroid.

Let G be a Lie groupoid over a manifold M , with Lie algebroid AG. The
tangent bundle of order r T rG has a natural Lie groupoid structure over T rM .
This structure is obtained by applying the tangent functor of order r to each
of the structure maps defining G (source, target, multiplication, inversion and
identity section). In the particular case where r = 1, we obtain the tangent
Lie groupoid.

Consider now the cotangent bundle T ∗G over G, we know that T ∗G is a
Lie groupoid over A∗G. The source and target maps are defined by:

s∗ (γg) (u) = γg
(
TLg (u− Tt (u))

)
and t∗ (δg) (v) = δg

(
TRg(v)

)
where γg ∈ T ∗gG, u ∈ As(g)G and δg ∈ T ∗gG, v ∈ At(g)G. The multiplication
on T ∗G is defined by:

(βg • γh) (Xg �Xh) = βg (Xg) + γh (Xh)

for (Xg, Xh) ∈ T(g,h)G(2). In [13], the author defines the cotangent Lie alge-
broid and proves that: There is a natural isomorphism of Lie algebroids

jG : A (T ∗G)→ T ∗ (AG)

such that the following diagram commutes

A(T ∗G) jG //

iA(T∗G)

��

T ∗(AG)

TT ∗G εG
// T ∗TG

T∗iAG

OO

where iAG : AG→ TG is the natural injection and εG : TT ∗G→ T ∗TG is the
natural isomorphism of Tulczyjew. By this isomorphism, we identify A (T ∗G)
with T ∗ (AG). Let (E,M, π) be a vector bundle, we denote by

(
xi, yj

)
an
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adapted coordinates system of E, it induces the local coordinates system(
xi, πj

)
in E∗(

xi, yj , pi, ζj
)

in T ∗E

and (
xi, πj , pi, ξ

j
)

in T ∗E∗

In [13], [12] is defined the natural submersion rE : T ∗E → E∗ such that locally

rE
(
xi, yj , pi, ζj

)
=
(
xi, ζj

)
.

There exists a Legendre type map
RE : T ∗E∗ → T ∗E

which is an anti-symplectomorphism with respect to the canonical symplectic
structures on T ∗E∗ and T ∗E respectively, and is locally defined by:

RE
(
xi, πj , pi, ξ

j
)

=
(
xi, yj ,−pi, ζj

)
with {

yj = ξj

πj = ζj

In this paper, we study the tangent lifts of higher order of multiplicative Poisson
structures, multiplicative Dirac structures and we study some properties. In
particular, we describe the structures of Dirac-algebroids induced by the
tangent lifts of higher order of multiplicative Dirac structures. Thus, the main
results are Propositions 3, 8, Theorems 1 and 2.
For the prolongations of functions, vector fields and differential forms, we adopt
the same notations of [14]. More precisely, for any X ∈ X(M) and ω ∈ Ωk(M)
we denote by X(α) and ω(α) the α-prolongations of X and ω respectively. All
geometric objects and maps are assumed to be infinitely differentiable. r will
be a natural integer (r ≥ 1).

1. Preliminaries

1.1. Some canonical transformations.
For each β ∈ {0, . . . , r}, we denote by τβ the canonical linear form on Jr0 (R,R)
defined by:

τβ(jr0g) = 1
β! ·

dβ

dtβ
(
g(t)

)
|t=0 , where g ∈ C∞(R,R) .
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For each manifold M , there is a canonical diffeomorphism (see [5], [8])

κrM : T rTM → TT rM

which is an isomorphism of vector bundles from

T r(πM ) : T rTM → T rM to πT rM : TT rM → T rM .

It is called the canonical isomorphism of flow associated to the bundle functor
T r. Let (x1, . . . , xm) be a local coordinates system of M , we introduce a
coordinates

(
xi, ẋi

)
in TM , (xi, ẋi, xiβ , ẋiβ) in T rTM and (xi, xiβ , ẋi, ẋiβ) in

TT rM . The local expression of κrM is given by:

κrM (xi, ẋi, xiβ , ẋiβ) = (xi, xiβ , ẋi, ẋiβ) with ẋiβ = ẋiβ .

By the same way, there is a canonical diffeomorphism (see [1])

αrM : T ∗T rM → T rT ∗M

which is an isomorphism of vector bundles

π∗T rM : T ∗T rM → T rM and T r(π∗M ) : T rT ∗M → T rM

dual of κrM with respect to pairings 〈·, ·〉′T rM = τr ◦ T r(〈·, ·〉M ) and 〈·, ·〉T rM ,
i.e. for any (u, u∗) ∈ T rTM ⊕ T ∗T rM ,

(1.1) 〈κrM (u), u∗〉T rM = 〈u, αrM (u∗)〉′T rM .

Let (x1, . . . , xm) be a local coordinates system of M , we introduce the co-
ordinates (xi, pj) in T ∗M , (xi, pj , xiβ , p

β
j ) in T rT ∗M and (xi, xiβ , πj , π

β
j ) in

T ∗T rM . We have:

αrM
(
xi, πj , x

i
β , π

β
j

)
=
(
xi, xiβ , pj , p

β
j

)
with {

pj = πrj
pβj = πr−βj

.

By εrM we denote the map (αrM )−1.

Remark 1. In the particular case where r = 1, the canonical isomorphism
α1
M : T ∗TM → TT ∗M coincides with the canonical isomorphism of Tulczyjew.
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1.2. Tangent lifts of higher order of Poisson manifolds.
We recall that in [10], it is defined for each integer q ≥ 1, the natural transfor-
mations
(1.2) κr,q : T r ◦ (

∧q
T )→

∧q
T ◦ T r

such that, for each manifold M of dimension m, we have locally:

(1.3) κr,qM (xiα,Πi1...iq
α ) = (xiα, Π̃i1,α1...iq,αq )

with
(1.4) Π̃i1,α1...iq,αq =

∑
γ1+···+γq+β=r

δr−γ1
α1

. . . δr−γqαq Πi1...iq
β .

Let Π be a multivector field of degree q on M . We put

(1.5) Π(c) = κr,qM ◦ T
rΠ: T rM →

∧q
TT rM .

Π(c) is a multivector field of degree q on T rM . Therefore, if locally

Π =
∑

1≤i1<···<iq≤m
Πi1...iq

∂

∂xi1
∧ · · · ∧ ∂

∂xiq

then, we have

(1.6) Π(c) =
∑

α1+···+αq+µ=r
(Πi1...iq )(µ) ∂

∂xi1r−α1

∧ · · · ∧ ∂

∂x
iq
r−αq

.

In the particular case where q = 2, and Π = Πij ∂

∂xi
∧ ∂

∂xj
we have:

(1.7) Π(c) = (Πij)(α+β−r) ∂

∂xiα
∧ ∂

∂xjβ
.

For a simple k-vector field of Π = X1 ∧ · · · ∧Xk with X1, . . . , Xk ∈ X(M), we
have
(1.8) Π(c) =

∑
β1+···+βk=r

X
(r−β1)
1 ∧ · · · ∧Xt(r−βk)

k .

Using the equation (1.8), we prove in [10] the following equality, for any
Φ ∈ Xp(M) and Ψ ∈ Xq(M), we have:

(1.9)
[
Φ(c),Ψ(c)

]
= [Φ,Ψ](c) .

Thus, if (M,ΠM ) is a Poisson manifold then, the pair (T rM,Π(c)
M ) is also a

Poisson manifold. This structure is called the tangent lift of order r of Poisson
structure.
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Proposition 1. Let (M,ΠM ) be a Poisson manifold. We denote by ]ΠM the
anchor map induced by ΠM . We have the following formula
(1.10) ]Π(c)

M

= κrM ◦ T r(]ΠM ) ◦ αrM .

Proof. See [10]. �

For some properties of the Poisson manifold (T rM,Π(c)
M ) see [10]. however,

these fundamental properties come from the formula:
iΠ(c)
M

ω(r−α) = (iΠMω)(α)

where ω ∈ Ω1(M) and α ∈ {0, 1, . . . , r}.

1.3. Tangent lifts of higher order of Lie algebroids.
For any vector bundle (E,M, π), we consider the natural vector bundle mor-
phism

χ
(α)
E : T rE → T rE

defined for each jr0ϕ ∈ T rE by:

χ
(α)
E (jr0ϕ) = jr0(tαϕ) .

Let u ∈ Γ(E), we define the section u(α) of (T rE, T rM,T rπ) by:

u(α) = χ
(α)
E ◦ T ru , 0 ≤ α ≤ r .

u(α) is called α-prolongation of the section u (see [5] or [16]).
We suppose that E is a Lie algebroid over M of anchor map ρ. In [10], we have
shown that: it exists one and only one Lie algebroid structure on T rE, of anchor
map ρ(r) = κrM ◦ T rρ such that: for any u, v ∈ Γ(E) and α, β ∈ {0, . . . , r} we
have:
(1.11) [u(α), v(β)] = [u, v](α+β) .

This Lie algebroid structure is called tangent lift of order r of Lie algebroid
(E, [·, ·], ρ). For some properties of the Lie algebroid (T rE, [·, ·], ρ(r)), see [10].
In particular for r = 1, we obtain the tangent lift of Lie algebroid (E, [·, ·], ρ)
defined in [4].
For s ∈ {1, . . . , r}, we consider the natural projection πr,sE : T rE → T sE
defined by:

πr,sE (jr0ϕ) = js0ϕ .

For any u ∈ Γ(E) and natural number α ≤ r, we have:

(1.12) πr,sE (u(α)) =
{
u(α) if α ≤ s
0 if α > s

.

In this case, we have the following result:
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Proposition 2. The vector bundle projection πr,sE : T rE → T sE is a morphism
of Lie algebroids over πr,sM : T rM → T sM .
Proof. The property of compatibility of Lie bracket between Γ(T rE) and
Γ(T sE) is obtained by the formula (1.12). Since, for any u ∈ Γ(E) and
α ∈ {0, . . . , r},

T (πr,sM ) ◦ ρ(r)(u(α)) = T (πr,sM ) ◦ [ρ(u)](α)

= T (πr,sM ) ◦
(
κrM ◦ χ

(α)
TM ◦ T

r[ρ(u)]
)

= κsM ◦ π
r,s
TM

(
jr0(tα[ρ(u)])

)
= ρ(s) ◦ πr,sA (u(α))

we deduce that, the projection πr,sE : T rE → T sE is a morphism of Lie alge-
broids over πr,sM . �

Remark 2. In the particular case where s = 1, the bundle projection
πr,1E : T rE → TE is a morphism of Lie algebroids over πr,1M : T rM → TM .
In [12], it is shown that, the bundle map (tangent projection) τE : TE → E is
a morphism of Lie algebroids over τM : TM →M , therefore we have:
Corollary 1. The vector bundle projection τ rE : T rE → E is a morphism of
Lie algebroids over τ rM : T rM →M .

Let (E,M, π) be a vector bundle. Consider the canonical pairing E∗ ×M
E → R. Applying the tangent functor of order r and projecting onto the
(r + 1)-component, we get a non degenerate pairing T rE∗ ×T rM T rE → R.
We use this pairing to define an isomorphism of vector bundles
(1.13) IrE : T rE∗ → (T rE)∗ .
Theorem 1. Let (E, [·, ·], ρ) be a Lie algebroid. The natural vector bundle

αrE : T ∗T rE → T rT ∗E

is an isomorphism of Lie algebroids over the canonical isomorphism IrE.
Proof. As E is a Lie algebroid, it follows that E∗ has a Poisson structure.
Therefore, the vector bundle morphism αrE∗ : T ∗T rE∗ → T rT ∗E∗ is an iso-
morphism of Lie algebroids (see [10]). The rest of the proof comes from the
commutative diagram

T ∗T rE∗
αrE∗ //

R̂TrE
��

T rT ∗E∗

T rRE

��
T ∗T rE

αrE

// T rT ∗E
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Where RE : T ∗E∗ → T ∗E is the Legendre map and R̂T rE = RT rE◦T ∗((IrE)−1).
�

Let (G ⇒ M) be a Lie groupoid. The vector bundle morphism κrG : T rTG→
TT rG is an isomorphism of Lie groupoids. So, it induces the isomorphism of
vector bundles

(1.14) jrG : T r(AG)→ A(T rG)

such that, the following diagram commutes

T r(AG)
jrG //

T riAG

��

A(T rG)

iA(TrG)

��
T rTG

κrG

// TT rG

In [7], it is defined the natural isomorphism (1.14) by the replacement of
tangent functor of order r, by any Weil functor.

2. Tangent lifts of higher order of Lie bialgebroids
and some properties

2.1. Lifting of Lie bialgebroids.

Proposition 3. Let (A,A∗) be a Lie bialgebroid. The pair (T rA, (T rA)∗) has
a canonical structure of Lie bialgebroid.

Proof. It is well-know that, if (A,A∗) is a pair of Lie algebroids and ΠA be a
linear Poisson bivector on A defined by the Lie algebroid A∗, then (A,A∗) is a
Lie bialgebroids if and only if

Tπ ◦ ]ΠA = ρA∗ ◦ rA .

Since A and A∗ are the Lie algebroids, it follows that T rA and T rA∗ are also
Lie algebroids. The structure of Lie algebroid of (T rA)∗ is such that the map
IrA : T rA∗ → (T rA)∗ is an isomorphism of Lie algebroids. In this case, we have
two structures of Poisson manifolds Π(c)

A and ΠT rA on T rA. By calculation
in local coordinates, we deduce that Π(c)

A = ΠT rA. In fact, let (ui)i=1...,n be
a basis of sections of A∗ the local expression of Lie bracket of sections and
anchor map are given by:

[ui, uj ] = ckijuk and ρA∗(uj) = ρij
∂

∂xi
.
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So, the Poisson bivector on A induced by a Lie algebroid A∗ is such that:

ΠA = 1
2c
k
ijyk

∂

∂yi
∧ ∂

∂yj
+ ρij

∂

∂xi
∧ ∂

∂yj
.

The structure of tangent lift of higher order of Lie algebroid on T rA∗ is given
by: [

u
(α)
i , u

(β)
j

]
=
(
ckij
)(γ)

u
(α+β+γ)
k

We put u(α)
·i = IrA(u(r−α)

i ). It follows that the Lie bracket of sections of (T rA)∗
is given by: [

u
(α)
·i , u

(β)
·j
]

= (ckij)(γ)u
(α+β−γ−r)
·k .

The Poisson structure on T rA is such that:

ΠT rA = 1
2(ckij)(α+β−γ−r)yγk

∂

∂yαi
∧ ∂

∂yβj
+ (ρij)(α+β−r) ∂

∂xiα
∧ ∂

∂yβj

= 1
2(ckijyk)(α+β−r) ∂

∂yαi
∧ ∂

∂yβj
+ (ρij)(α+β−r) ∂

∂xiα
∧ ∂

∂yβj

= Π(c)
A

Thus, ΠT rA = Π(c)
A . By the following commutative diagram

T rT ∗A
T rrA // T rA∗

IrA∗

��
T ∗T rA

αrA

OO

rTrA
// (T rA)∗

we deduce that, the diagram

T ∗T rA

]
Π(c)
A //

rTrA

��

TT rA

TT rπ

��
(T rA)∗

ρ(TrA)∗
// TT rM

commutes. Where ρ(T rA)∗ = ρ
(r)
A∗◦(IrA)−1. We deduce that the pair (T rA, (T rA)∗)

is a Lie bialgebroid (see the theorem of Mackenzie and Xu in [12]). �

Remark 3. (i) The Lie algebroids (T rA)∗ and T rA∗ are naturally equi-
valent by the isomorphism of vector bundles (IrA)−1.

(ii) When (g, g∗) is a Lie bialgebra then, (T rg, (T rg)∗) is a Lie bialgebra.
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Let (A,A∗) be a Lie bialgebroid, the composition ρA∗ ◦ ρ∗A : T ∗M → TM
defines a Poisson structure onM of bivector ΠA,A∗ . Therefore, we have ]ΠA,A∗ =
ρA∗ ◦ ρ∗A.

Corollary 2. Let (A,A∗) be a Lie bialgebroid. The Poisson bivector on T rM
induced by the Lie bialgebroid (T rA, (T rA)∗) is the complete lift of order r of
the Poisson bivector ΠA,A∗ . For further details, we have:

ΠT rA,(T rA)∗ = Π(c)
A,A∗ .

Proof. The anchor maps of T rA and (T rA)∗ are given by: ρ(r)
A = κrM ◦ T rρA

and ρ(T rA)∗ = κrM ◦ T rρA∗ ◦ (IrA)−1. By the formulas

(IrA)−1 ◦ (T rρA)∗ = T r(ρ∗A) ◦ (IrTM )−1

(IrTM )−1 ◦ (κrM )∗ = αrM

we have:
]ΠTrA(TrA)∗ = κrM ◦ T rρA∗ ◦ (IrA)−1 ◦ (κrM ◦ T rρA)∗

= κrM ◦ T rρA∗ ◦ (IrA)−1◦ (T rρA)∗◦ (κrM )∗

= κrM ◦ T r(ρA∗ ◦ ρ∗A) ◦ αrM
= κrM ◦ T r(]ΠA,A∗ ) ◦ αrM
= ]Π(c)

A,A∗

�

2.2. Tangent lifts of higher order of multiplicative
Poisson manifolds.
Let G be a Lie groupoid over M , AG denote the Lie algebroid of Lie groupoid
G and A∗(G) his dual. In [12], it is known that a bivector ΠG ∈ Γ(

∧2
TG) is

a multiplicative bivector if and only if

T ∗G
]ΠG //

��

TG

��
A∗(G)

ρA∗(G)
// TM

is a morphism of Lie groupoids over the vector bundle map ρA∗(G).
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Theorem 2. Let (G,ΠG) be a multiplicative Poisson manifold on a Lie
groupoid G over M . The pair (T rG,Π(c)

G ) is a multiplicative Poisson manifold
on the Lie groupoid T rG over T rM .

Proof. We put γrAG = (IrA(G))−1 ◦ (jrG)∗, we have the following commutative
diagram

T ∗T rG
αrG //

��

T rT ∗G

��
A∗(T rG)

γrAG

// T r(A∗(G))

we deduce that the diagram

T ∗T rG

]
Π(c)
G //

��

TT rG

��
A∗(T rG)

ρA∗(TrG)
// TT rM

commutes, where ρA∗(T rG) = (IrA(G))−1 ◦ (jrG)∗ ◦ ρ(r)
A∗(G). We deduce that

(T rG,Π(c)
G ) is a multiplicative Poisson manifold on the Lie groupoid T rG over

T rM . �

Corollary 3. Let (G,ΠG) be a multiplicative Poisson manifold. There is a
natural isomorphism of Lie bialgebroids between the Lie bialgebroid (A(T rG),
A∗(T rG)) of the Poisson groupoid (T rG,Π(c)

G ) and the Lie bialgebroid (T r(AG),
(T r(AG))∗).

Proof. In [12], it is shown that the diagram

A(T ∗G)
A(]ΠG )

//

εG

��

A(TG)

j1G
��

T ∗(AG)
]ΠAG

// T (AG)
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commutes. By the equalities
T r
(
(j1
G)−1) ◦ T rA(]ΠG) = T r(]ΠAG) ◦ T r(jG)

κrAG ◦ T r(]ΠAG) = ]Π(c)
AG

◦ εrAG

T (jrG) ◦ ]Π(c)
AG

= ]ΠA(TrG) ◦ T
∗((jrG)−1)

j1
A(T rG) ◦ ]ΠA(TrG) = A(]Π(c)

G

) ◦ j−1
G .

It follows that the diagram

A(T ∗T rG)
A(]

Π(c)
G

)
//

��

A(TT rG)

��
A∗(T rG)

ρA∗(TrG)
// TT rM

commutes. So, the Lie bialgebroid (T r(AG), (T r(AG))∗) is the Lie bialgebroid
induced by the Poisson groupoid (T rG,Π(c)

G ). �

Remark 4. If (G,ΠG) is a Poisson-Lie group then,
(
T rG,Π(c)

G

)
is a Poisson-Lie

group. The Lie bialgebra defined by (T rG,Π(c)
G ), is the Lie bialgebra (T rg,

(T rg)∗), where (g, g∗) is the Lie bialgebra of (G,ΠG).

3. Multiplicative Dirac structures of higher order

3.1. Tangent lifts of higher order of Dirac structures.
Let (M,LM ) be an almost Dirac structure. We set
(3.1) LT rM = (κrM ⊕ εrM )(T rLM ) ⊂ TT rM ⊕ T ∗T rM ,

LT rM is an almost Dirac structure on T rM .
By the formula (3.1), we deduce that: for any S = X ⊕ ω ∈ Γ(LM ) and

β ∈ {0, . . . , r},

(3.2) (κrM ⊕ εrM )(S(β)) = X(β) ⊕ ω(r−β)

is a section of vector bundle LT rM .
The integrability of an almost Dirac structure (M,LM ) is measured by the

Courant 3-tensor TLM defined by:
TLM : Γ(LM )× Γ(LM )× Γ(LM )→ C∞(M)

(S1, S2, S3) 7→ 〈[S1, S2], S3〉+
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where [·, ·] is the Courant bracket defined on X(M)⊕Ω1(M). In fact, an almost
Dirac structure LM ⊂ TM ⊕ T ∗M defines a Dirac structure if and only if the
Courant tensor TLM vanishes.

Proposition 4. TLM
(c)is a complete lift of 3-tensor TLM from LM to T rLM

(see [2]). We have:

(3.3) TLM
(c) = TLTrM ◦

( 3⊕
(κrM ⊕ εrM )

)
Proof. See [11]. �

By this result, we deduce that an almost Dirac structure (M,LM ) is inte-
grable if and only if (T rM,LT rM ) is integrable.

Let f : M → N be a smooth map. The elements X ⊕ ω ∈ X(M)⊕ Ω1(M)
and Y ⊕$ ∈ X(N)⊕ Ω1(N) are f -related if Y = Tf(X) and T ∗f($) = ω.

Proposition 5. Let (M,LM ) and (N,LN ) the Dirac manifolds. If f : M → N
is a backward (resp. forward) Dirac map then,

T rf : (T rM,LT rM )→ (T rN,LT rN )

is a backward (resp. forward) Dirac map.

Proof. We recall that, f is a backward Dirac map if and only if, the C∞(N)-mo-
dule Γ(LN ) is the space of all f -related sections to sections of Γ(LM ). The
remainder of proof comes from the fact that, if X ⊕ ω and Y ⊕ $ are
f -related then, for any α = 0, · · · , r, X(α) ⊕ ω(r−α) and Y (α) ⊕ $(r−α) are
T rf -related and the spaces Γ (LT rM ), Γ (LT rN ) are generated by the sets{
X(α) ⊕ ω(r−α), X ⊕ ω ∈ Γ (LM )

}
and

{
Y (α) ⊕ $(r−α), Y ⊕ $ ∈ Γ (LN )

}
respectively. When f is a forward Dirac map, we have the same proof. �

Remark 5. We denote by DM the category of Dirac manifolds and Dirac
maps. By the Proposition 5, we have the natural functor which send an
object (M,LM ) to the tangent object of higher order (T rM,LT rM ), and
a Dirac morphism f : (M,LM ) → (N,LN ) to the tangent morphism of
higher order T rf : (T rM,LT rM )→ (T rN,LT rN ). This functor is denoted by
T r : DM→ DM.

3.2. Tangent lifts of higher order of multiplicative Dirac structures.

Definition 1. Let G be a Lie groupoid over the manifold M . A Dirac structure
LG on G is said to be multiplicative if LG ⊂ TG⊕ T ∗G is a sub groupoid over
some sub bundle E of TM ⊕A∗ (G).
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Example 1. Let (G,ΠG) be a Poisson groupoid. The multiplication of ΠG

is equivalent to saying that ]ΠG : T ∗G→ TG is a morphism of Lie groupoids.
Therefore, the sub bundle LΠG =graph (]ΠG) ⊂ TG⊕ T ∗G defines a multipli-
cative Dirac structure over the sub bundle E ⊂ TM ⊕A∗ (G), where E is the
graph of dual anchor map ρA∗(G) : A∗(G)→ TM .

Proposition 6. Let LG ⊂ TG ⊕ T ∗G be a multiplicative Dirac structure
on a Lie groupoid G. The tangent Dirac structure of higher order LT rG ⊂
TT rG ⊕ T ∗T rG is also a multiplicative Dirac structure on a Lie groupoid
(T rG ⇒ T rM).

Proof. The map κrG : T rTG→ TT rG is an isomorphism of Lie groupoids over
κrM : T rTM → TT rM . By the same way, the bundle εrG : T rT ∗G→ T ∗T rG is
an isomorphism of Lie groupoids over ((jrG)∗)−1 ◦ IrAG : T r(A∗G)→ A∗(T rG).
Since LG is a Lie sub groupoid of TG⊕T ∗G, then T rLG is a Lie sub groupoid
of T rTG⊕ T rT ∗G over the sub bundle T rE. By the groupoid isomorphism
κrG ⊕ εrG : T rTG⊕ T rT ∗G→ TT rG⊕ T ∗T rG, we deduce that LT rG = (κrG ⊕
εrG)(T rLG) is a Lie sub groupoid of TT rG ⊕ T ∗T rG over the sub bundle
T rE =

(
κrM ⊕

(
((jrG)∗)−1 ◦ IrAG

))
(T rE) ⊂ TT rM ⊕ A∗(T rG). Hence we

conclude that LT rG is a multiplicative Dirac structure on (T rG ⇒ T rM). �

Remark 6. In the particular case where G is a Lie group, the tangent Dirac
structure of higher order LG is a Dirac structure on the Lie group T rG.

3.3. Tangent lifts of higher order of linear Dirac structures.
Let (E,M, π) be a vector bundle. We consider the double vector bundle
structures (TE, TM,E,M), (T ∗E,E∗, E,M) and (TE⊕T ∗E, TM⊕E∗, E,M)

Definition 2. A Dirac structure LE ⊂ TE ⊕ T ∗E is called linear if it defines
a double sub vector bundle (L,F,E,M) where F is sub bundle of TM ⊕ E∗.

Example 2. Let Π be a linear Poisson bivector on (E,M, π). Since ]Π : T ∗E →
TE is a morphism of double vector bundles, it follows that LΠ = graph (]Π) ⊂
TE ⊕ T ∗E is a linear Dirac structure over the sub bundle FΠ = graph (ρE∗)
where ρE∗ :E∗ → TM is the anchor map of the Lie algebroid E∗.

Proposition 7. Let LE ⊂ TE ⊕ T ∗E be a linear Dirac structure over the sub
bundle F ⊂ TM ⊕ E∗. The Dirac structure LT rE ⊂ TT rE ⊕ T ∗T rE is linear
over the sub bundle T rF = (κrM ⊕ IrE)(T rF ) ⊂ TT rM ⊕ (T rE)∗.

Proof. It comes from the fact that, κrE : T rTE → TT rE and εrM : T rT ∗E →
T ∗T rE are the isomorphism of double vector bundles. �

Let (E, [·, ·], ρ) be a Lie algebroid over M , we consider the cotangent Lie
algebroid rE : T ∗E → E∗ and the Lie algebroid TE ⊕ T ∗E over TM ⊕ E∗.
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There is a class of linear Dirac structures LE over E, which also define a Lie
subalgebroid of TE ⊕ T ∗E → TM ⊕ E∗ over some bundle F ⊂ TM ⊕ E∗. It
is called algebroid-Dirac structure.

Proposition 8. Let LE ⊂ TE⊕T ∗E be an algebroid-Dirac structure over the
sub bundle F ⊂ TM ⊕E∗. The linear Dirac structure LT rE ⊂ TT rE⊕T ∗T rE
is an algebroid-Dirac structure over the sub bundle T rF = (κrM ⊕ IrE) (T rF ) ⊂
TT rM ⊕ (T rE)∗.

Proof. Let u ∈ Γ(E), for any 0 ≤ α ≤ r and β ∈ {0, 1} we have:

κrE
(
(u(β))(α)) = (u(α))(β) and (ρ(r))(1) ◦ κrE = (ρ(1))(r) .

By the equalities above, we deduce that κrE : T rTE → TT rE is an isomorphism
of Lie algebroids over κrM : T rTM → TT rM . As εrE is an isomorphism of Lie
algebroids over IrE : T rE∗ → (T rE)∗, we deduce that LT rE ⊂ TT rE⊕T ∗T rE
is an algebroid-Dirac structure over the sub bundle T rF = (κrM ⊕ IrE)(T rF ) ⊂
TT rM ⊕ (T rE)∗. �

Remark 7. We denote by 〈·, ·〉G the non degenerate symmetric pairing on
TG⊕ T ∗G. 〈·, ·〉G is a morphism of Lie groupoids, where R is equipped with
the usual abelian group structure. We apply the Lie functor, we obtain a non
degenerate pairing

A(〈·, ·〉G) : A(TG)⊕A(T ∗G)×AG A(TG)⊕A(T ∗G)→ R .
By the same way, we denote by 〈·, ·〉AG the non degenerate symmetric pairing
on T (AG)⊕ T ∗(AG), by the canonical map,

(j1
G)−1 ⊕ jG : A(TG)⊕A(T ∗G)→ T (AG)⊕ T ∗(AG)

we deduce that:
(3.4) 〈·, ·〉AG = A(〈·, ·〉G) ◦

(
(j1
G ⊕ j−1

G )⊕ (j1
G ⊕ j−1

G )
)
.

Let LG ⊂ TG⊕ T ∗G be an almost multiplicative Dirac structure. We put:
(3.5) LAG =

(
(j1
G)−1 ⊕ jG)

(
A(LG)

)
⊂ T (AG)⊕ T ∗(AG) .

Clearly, LAG is a linear almost Dirac structure on AG. In [17], it is shown
that: LAG is integrable if and only if LG is integrable.

Remark 8. We denote by Dirmult(G) (resp. Diralg(E)) the space of all multi-
plicative Dirac structures on G (resp. algebroid-Dirac structures on E). We
have the natural map

Dirmult(G)→ Diralg(AG)
LG 7→ LAG
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where LAG = ((j1
G)−1 ⊕ jG)(A(LG)). We have the functor which send an

object (G,LG) to the algebroid-Dirac object (AG,LAG), and a multiplica-
tive Dirac morphism f : (G,LG)→ (H,LH) to the algebroid-Dirac structure
Af : (AG,LAG)→ (AH,LAH). This functor is denoted by A. Via the canonical
natural equivalence, this functor coincides with the Lie functor A.

Corollary 4. The natural vector bundle

T (jrG)⊕ T ∗((jrG)−1) : TT r(AG)⊕ T ∗T r(AG)→ T (A(T rG))⊕ T ∗(A(T rG))

send the linear Dirac structure LT r(AG) in LA(T rG) and it is an isomorphism
of Dirac structures.

Proof. We know that,

T (jrG) ◦ κrAG ◦ T r
(
(j1
G)−1) = (j1

T rG)−1 ◦A(κrG) ◦ jrTG

T ∗
(
(jrG)−1) ◦ εrAG ◦ T r(jG) = jT rG ◦A(εrG) ◦ jrT∗G .

In this case, we have:[
T (jrG)⊕ T ∗

(
(jrG)−1)]((κrAG ⊕ εrAG)

(
T r(LAG)

))
=
[(
T (jrG) ◦ κrAG

)
⊕
(
T ∗
(
(jrG)−1) ◦ εrAG)](T r(LAG)

)
=
[(
T (jrG)◦κrAG◦T r

(
(j1
G)−1))⊕(T ∗((jrG)−1) ◦ εrAG◦ T r(jG)

)](
T r
(
A(LG)

))
=
[(

(j1
T rG)−1 ◦A(κrG) ◦ jrTG

)
⊕
(
jT rG ◦A(εrG) ◦ jrT∗G

)](
T r
(
A(LG)

))
=
[(

(j1
T rG)−1 ◦A(κrG)

)
⊕ jT rG ◦A(εrG)

](
A(T rLG)

)
=
(
(j1
T rG)−1 ⊕ jT rG

)(
A
(
(κrG ⊕ εrG)(T rLG)

))
=
(
(j1
T rG)−1 ⊕ jT rG

)(
A(LT rG)

)
We conclude that, (T (jrG)⊕ T ∗((jrG)−1))(LT r(AG)) = LA(T rG). �

These results generalize the tangent lifts of higher order of multiplica-
tive Poisson structures and multiplicative symplectic structures on the Lie
groupoids.

Remark 9. By the Corollary 4, we have the natural equivalence between the
functors A ◦ T r and T r ◦ A.
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