[3] Chen, W. Z.: Operators Approximation Theory. Xiamen University Press Xiamen (1989), Chinese.
[6] Gal, S. G.:
Voronovskaja's theorem, shape preserving properties and iterations for complex $q$-Bernstein polynomials. Stud. Sci. Math. Hung. 48 (2011), 23-43.
MR 2868175
[7] Gasper, G., Rahman, M.:
Basic Hypergeometric Series. Encyclopedia of Mathematics and Its Applications 34. Cambridge University Press Cambridge (1990).
MR 1052153
[9] Kac, V., Cheung, P.:
Quantum Calculus. Universitext. Springer New York (2002).
MR 1865777
[12] Mahmudov, N. I.:
Approximation by genuine $q$-Bernstein-Durrmeyer polynomials in compact disks. Hacet. J. Math. Stat. 40 (2011), 77-89.
MR 2663881 |
Zbl 1230.30020
[13] Muraru, C.-V.:
Note on $q$-Bernstein-Schurer operators. Stud. Univ. Babeş-Bolyai Math. 56 (2011), 489-495.
MR 2843706
[15] Phillips, G. M.:
Bernstein polynomials based on the $q$-integers. Ann. Numer. Math. 4 (1997), 511-518.
MR 1422700 |
Zbl 0881.41008
[16] Videnskii, V. S.: On $q$-Bernstein polynomials and related positive linear operators. Problems of Modern Mathematics and Mathematical Education Hertzen readings St.-Petersburg (2004), 118-126 Russian.