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Abstract. Very recently the g-Bernstein-Schurer operators which reproduce only constant
function were introduced and studied by C.V.Muraru (2011). Inspired by J. P. King, Posi-
tive linear operators which preserve z2 (2003), in this paper we modify ¢-Bernstein-Schurer
operators to King type modification of g-Bernstein-Schurer operators, so that these opera-
tors reproduce constant as well as quadratic test functions 22 and study the approximation
properties of these operators. We establish a convergence theorem of Korovkin type. We
also get some estimations for the rate of convergence of these operators by using modu-
lus of continuity. Furthermore, we give a Voronovskaja-type asymptotic formula for these
operators.

Keywords: King type operator; g-Bernstein-Schurer operator; Korovich type approxima-
tion theorem; rate of convergence; Voronovskaja-type result; modulus of continuity
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1. INTRODUCTION
Let ¢ > 0. For each nonnegative integer k, the ¢-integer [k], and the g-factorial
[k],! are defined by

(1-¢"/0-q), q#1,
k, qg=1
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Fujian Province of China (Grant No. JA12324), and the Natural Science Foundation of
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and

respectively.
Then for ¢ > 0 and integers n, k, n > k > 0, we have

[k+1]g=1+qlkly and [k]g+ qk[n —klg = [nlq-

For the integers n, k, n > k > 0, the ¢-binomial coefficients are defined by

[n] — [n]q!

k], [Klg!n — k]!

Let ¢ > 0. For a nonnegative integer n, the g-analogue of (x — a)" is defined by
( ) 1, n =20,
T —a); =

e (x —a)(x —qa)...(x —q¢"ta), n>1.

All of the previous concepts can be found in [7], [9].

In 1997 Phillips [15] introduced and studied the g analogue of Bernstein polynomi-
als. After this, the applications of g-calculus in the approximation theory became one
of the main areas of research, and many authors studied new classes of ¢-generalized
operators (for instance, see [1], [2], [5], [8], [6], [11], [12], [14]). Very recently Muraru
[13] introduced and studied the following ¢-Bernstein-Schurer operators for any fixed
p € NU{0}:

n+p
1) Suplfiain) =3 |77 =y A ),

k=0
where z € [0,1], n €N, 0< g < 1and f € C[0,1+ p].

The moments of these operators Sy, ,(f;q; x) were obtained as follows (see [13]):

Remark 1.1. For S, ,(t;¢; ), j = 0,1,2, we have

Snp(Ligsz) =1, Spp(t;gz) = %,
Snp(t?; g z) = [n[z]f]q([nw]qxz (1 o)),

It is well known that the classical Bernstein polynomials preserve constant as well
as linear functions. To make the convergence faster, King [10] proposed a method of
modified Bernstein polynomials as follows:

RS 3 (4 [T i

k=0
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where f € C[0,1],0 < 2 < 1, and r}(z): [0,1] — [0, 1] are defined by

o (T) = 1 n 1
- 2 —=2,3,...
2@—1y+¢n—1x+4m—uf e

For e;(x) = z', i = 0,1,2, these operators V,,(f;x) preserve the test functions
€0, ez and V,,(f;x) = r’(x) holds. Replacing r’(x) by e1, one reobtains Bernstein
polynomials.

It can be observed from the above Remark 1.1 that these operators Sy, ,(f;q; )
reproduce only constant functions. Inspired by King, to make the convergence faster,
we can modify these operators so that they reproduce constant as well as quadratic
test functions e;. For this purpose we propose the modification of these operators
which were defined above by (1.1) to be

(1.2) Son(frqi7) = « {n + p] k _ n+tp—k
. n,p 7an) Z k? rn,p(qvx)(l rnyp(%x))q f([k]q/[n]Q)v
k=0 q

where z € [0,1],n €N, 0< g < 1, f € C[0,1+p], p € NU {0} is fixed,

z2, if p=0,

rp(@:2) = § =L+ ply + 1L+ P2+ 4L+ pl (L +p), — D22
2[1+plg(1+plg — 1) ’

~[n+ply + /I 4 92+ 4lnlZn 4 plo(In + 9l — 1)a?
2+ pla(n+ s — D)

ifp=1,2,...

Tnp(g, ) = ,n>=2.

Note that 0 < rpp(g,2) <1lfor 0 <g<1,neN, ze0,1] and fixed p € NU{0}.

The aim of the present article is to study approximation properties of these op-
erators S’n,p( f;¢;x) and to estimate the rate of convergence by using modulus of
continuity. Furthermore, we give the quantitative Voronovskaja-type asymptotic
formula.

In the paper, C is a positive constant. In different places, the value of C' may be
different. For f € C[0,1 + pl|, we denote ||f|| = max{|f(z)|;z € [0,1 + p|}.
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2. AUXILIARY RESULTS

In the sequel, we shall need the following auxiliary results.

Lemma 2.1. For Smp(tj;q;x), j=0,1,2,3,4, we have
M) Snp(ligzz) =15
S,

(i) ~n,p(lﬁ;q,x) [0+ plornp(g, 2)/[nlg;

(i) Spp(t% q;2) = ([n+plo/ M+ Plors (@ 2) + 70 (0, 2) (1= 7 p(g, )] = 2%

(iv) Snp(tq:2) = ([0 + plo/[]5)rnp(a, @) + (20 + ¢*)/[n]D[n + plgln + p — 1g x
Tap(0:2) + (/[ [0+ plgln +p — Ugln + p = 2]gr5 (g, ), forn+p > 2;

(V) Snp(t* g 2) = (In+ plo/[n]3)rmp(a, 2) + ((3q + 3¢% + ¢°)/[n]4)[n + plgln + p —
lo7n (@) + ((3¢% + 24" + ¢°)/[nlg)[n + plg[n +p — Ug[n +p = 2]g7r5 (¢, @) +
(¢°/[n))[n + plgln +p = 1gln+p = 2y[n +p = 3lg73 (g, x), forn+p > 3.

—_

Proof. In view of the definition given by (1.2) and Remark 1.1, we can easily

obtain that identities (i), (ii), (iii) hold.
(iv) When j =3 and n+p > 2, in view of [k + 1], = 1 + ¢[k], we have

n+p
Susttian) =3 |17 Ahp@ a0 - rasta ()
k=1 q
1" 4 plol (1 200K + 2K S
SRR & Wre—hoilg e @00 Tale )
[ [—l-]sp] Tnp(q, )
2q + q2 miet [TL + p]q' k+1 n+p—k—1
YRR & oo T kot e @0 )
q3 n+p—1 [n—l—p] ) S
+@ kzzg [k} 2] [n+p L _ ] 1 Z:; (q7 )(1_rn,p(q7x))q+ F
n 2
—%rn,p(qax)-i—%[;if [n + plgln +p — 1]gr np(q, x)
3
+§—]3[n+p1q[n+p—11 [n+p—20gr% (a,2).

(v) When j =4 and n + p > 3, similarly to the case of j = 3 and n+ p > 2, by

simple calculation we can get the stated result. O
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Lemma 2.2. Let 0 < ¢ <1, z € [0,1], n > 2 we have

(1) 0 <z —Snp(tiqia) < [n+plo/2lnlg([n +plg — 1));
(i) Snp((t—2)%q2) < [n+plg/(Inlg(In +plg — 1))

Proof. (i)For0<gqg<1,n€eN,z¢€][0,1], by simple calculation we can easily
obtain & — S p(t; ¢; ) = x — ([n + ple/[n]g)rn.p(q, ) 2 0.
On the other hand, for n > 2 we have

T — Sn,p(t; (Lx) =T — [n +p]qrn,p(% (E)
[n]q

%Mﬂm+ﬂq—nw+m+ﬂq—¢m+p]+4H[H+M(W+Mq—ﬂﬂ
2[nq([n +plg — 1)

1
2[n)q([n +plg — 1)
A[n]q[n + plg([n + plg — Dz — 4[n]3([n + plg — 1)2°

ﬂﬂﬂh+ﬂq—U$+M+Mq+JM+¢E+4Mﬂn+MAM+Mq—Uﬁ

X

< 1 . An]qln + plo(In+plg — 1)
2[n]q([n +plq — 1) ﬂ](W+P]—1-+¢4 (n+pl, — 1)?
[n + plg

2[n]q([n +plg —1)°

(ii) In view of Lemma 2.1 and (i) above, for x € [0,1], n > 2 we have

Snp((t— x)Q; g;x) = Sn,p(tQ; q; ) — 2x5’n,p(t; q; ) + z?
[n + plg
[nlg([n +plg— 1)

=22(z — Snp(t; ;7)) <

(]
Lemma 2.3. For f € C[0,1+p], z € [0,1] and n € N we have
|Snp(f3a:2)] < |-
Proof. In view of the definition given by (1.2) and Lemma 2.1, we have
[Snp(F: 42| < Sup(Lig; )1 f] = |11
(]
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Let W2 = {g € C[0,1+p]: ¢, ¢" € C[0,1+p]}. For 6§ > 0, f € C[0,1 + pl,
Peetre’s K-functional is defined as

Ks(f,8) = inf{||f — gl| + 6||lg"||: g € W?}.

Let § > 0, f € C[0,1 4+ p]. The second order modulus of smoothness for f is
defined as

wz(ﬁ\/g): sup sup |f(z+2h)—2f(z+h)+ f(x)],
0<h<V6 2,2+2h€[0,14p]

the usual modulus of continuity for f is defined as

w(f,0) = sup sup  [f(z +h) = ()]

0<h<d z,z+h€e[0,1+p]

For f € C[0,1 + p], following [4, p. 177, Theorem 2.4], there exists a constant
C > 0 such that

(21) KQ(fv(s) < CwQ(fa \/g)
O

Lemma 2.4. Let g, € (0,1), ¢, — 1 and ¢ — a as n — oo. For every z € (0, 1]
we have

(i) lim [n]q7l§n7p(t — T qn;x) = (x—1)/2;

n—00

(i) lim [n]qngn,p((t - x)2§ qn; ) = 2(1 — x);

n—oo

(iif) lim [n]g, Spp((t — )% gn;2) = 0.

Proof. Assume that n >3, g, € (0,1), ¢, — 1 and ¢ — a as n — occ.
(i) Denote

An(gn; ) = \JIn+pI2, + 4112, [n+ pl, ([ + Plg, — D2,
B (qn; ) = 2[n]g, ([n + plg, — D + [0+ plg, -

For every z € (0,1] we have

lim [n]g, Snp(t — ;qn;7) = nlgrolo([n + PlgTn,p(Gn, ) — [0]g, T)

n—oo
An(gqn; ) — Bn(Qn;x) RT 2[”]3”‘232 - Z[n](bz[n +p](I7zx T 1
= lim = lim =
n—0oo 2([n+p]qn -1) n—oo  Ap(qn;x) + Bn(qn; x) 2

810



(i) Since [n]y, Snp((t —)%; gn; &) = —22[n),, Sn.p(t — T; qn; ), s0, by (i) above we
an Snp((t = 2)% s @) = 2(1 — 2).
(iii) In view of Lemma 2.1, using [n + pl,, = [nlq, + ¢*[Plg. Jim Tnp(Qn,T) = T

and lim ([n+ plg, Tn.p(qn, ) — [n]g, ) = (z —1)/2, we have

obtain lim [n]
n—oo

lim [n]qngn,p((t - x)4; qn; ™) = nlirr;o[n]q7L [Sn,p(t4; qn; T) — 4x§n,p(t35 qn;T)

+ 6:525’”,1,(152; Gn;T) — 4x3§n,p(t; qn; ) + 2]
_ ]im [n +p]qn([n +p]q7}, - 1)([” +p]Qn - [2](]71) 4

n—oo [n]gﬂ T”vp(qn7 x)
—1 n + p|?
— 4z 2+ Pla, ([ + Pla, )rfw(qn, r) 4 622 [+ pla, i ]p]q" 7o o (Gn, )
qn

[n]q.,

~ 2% + g, Tnp(an, @) + [l | - 2 — 3apa’®

e e R et
4 622 7[71[—7;]?]3 rfw(qn, z) — 42°[n + plg, rnp(gn, z) + 2 [n]qn} + ' — 3apa’
= i [Pl e = (gl e 2) = I )02 0, )
dn
el TP g0y el e
D D

— 42°[n + plg, Tnp(qn, ) + 2 [n]qﬂ} — 3apa?

— hm _31_ [n+p]qn

n—oo (],

([n + Plgnmnp(gn, ) — [n]qnx)ri,p(%z; )

n+ Plg,
=8l 202 ) 4 622 (sl ) = [l ), 2)
Adn

rz—1
+ 20+ plg, 27 p (G0 2) + 2 [0, | — Bapa* + T—a
= lim [_3552([71 + Plgn,p(Gns ) = (1] g, )70 p (G0, )

n—oo

- 953([” +p]qn7”n,p(%a T) — [n]Qnm)] +2z* — 22° = 0.
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3. MAIN RESULTS
First we give the following convergence theorem for the sequence {5, ,(f;q)}.

Theorem 3.1. Let g, € (0,1). Then the sequence {S’n,p(f;qn)} converges to f
uniformly on [0, 1] for any f € C[0,1 + p] if and only if lim g, = 1.

Proof. Letg, € (0,1)and lim g, = 1, then we have [n],, — coasn — oo (see
n—oo

[16]). Thus, by Lemma 2.1 and Lemma 2.2, we have nli»ngo 1Sn.p (€55 qn; ) —ejlleroy =
0 for ej(z) = a7, j = 0,1,2, where | f||cjo1] = max{|f(z)|;z € [0,1]}. According
to the well-known Bohman-Korovkin theorem ([3, p. 40, Theorem 1.9]), we get that
the sequence {S’n,p(f; gn)} converges to f uniformly on [0,1] for any f € C[0,1 + p].

We prove the converse result by contradiction. If {¢,} does not tend to 1 as
n — o0, then it must contain a subsequence {q,,} C (0,1) with n; > 2, such that
klijl;lo Gn, = qo € [0,1). Thus

1 1—qn
—_— = hm#:l—qo.

im
koo [nklg,, koo 1 — (gn, )™

Taking n = ng, ¢ = ¢y, in Smp(t; q; z), by Lemma 2.1 we get

N [Nk + Dlgn. Tngp(@ng» T)
Syt @ny; ) = KTk k>
[klg,,

=[x +plgn, + \/[nk +0lg,, +Allg,, e+ pla,, ([ +plg,, —1)a
2[nklq,, ([nk +plg,, —1)

1- 1—qo\2 22
— — q0+ ( (JO) +x—7éx, as k — oo.
2qo 2qo 0

This leads to a contradiction, hence lim ¢, = 1. Theorem is proved. O
n—oo

Next we estimate the rate of convergence.

Theorem 3.2. Let f € C[0,1+p|, v € [0,1], n > 2, ¢ € (0,1) we have
|Snp(f3a52) = (@) < 2w(f,6,), where 6, = \/In + plo/([n]y([n + plg — 1))

Proof. By Lemma 2.1 we have

1Snp(fiq:2) = F(@)] = [Snp(f(t) = F(@):q52)| < Sup(£(t) — f(@)];q:2).

Since for t € [0,1+ p], x € [0,1] and any § > 0 we have

[f() = f@)] < (1+0672(t — 2)*)w(f, ).
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We get
|§n7p(f§ gz) — f(@)] < [gn,p(h g x) + 572§n,p((t - 37)2§ ¢ x)|w(f,0).
By Lemma 2.1 and Lemma 2.2, for z € [0, 1], n > 2 we have
Snp(f3q:2) = f(2)] < (1467207 )w(f. ).
Taking § = d,,, then from the above inequality we obtain the desired result. O

Corollary 3.1. Let M > 0,0 < a < 1, f € Lip§; on [0,1 4+ p] and n > 2,
q € (0,1). Then we have

||Sn,p(f§ ¢ ) — fllejo,y < 2Méy,

where §,, is given in Theorem 3.2.

Proof. Let M > 0,0 < a < 1, f € Lipy; on [0,1 + p]. Then we have
f € C[0,1+p]. For any 6 > 0, since f € Lip}; is equivalent to w(f,d) < M§®, thus,
by Theorem 3.2, for z € [0,1], n > 2 we have

|Snp(F30:2) = F(2)] < 20(f,0n) < 2MOY,
which completes the proof. O

Theorem 3.3. Let f € C[0,1+p], z € [0,1], n > 2, ¢ € (0,1). Then we have

- 02 52
[Snp(fiq2) — f()] < Cwa (ﬁ o/ 1+ Z”) +w(f, 7”)

where C' is a positive constant and §,, is given in Theorem 3.2.

Proof. For f e C[0,1+p], z €[0,1] we define

& & n+plgTnplq, T
BN Sulfie) = Suplfiga) - (ML 4y
q
By Lemma 2.1 we get S, ,(1;¢;2) = 1, Snp(t;q;2) = 2. Let g € W2, t € [0,1+p),
2 € [0,1]. Then by Taylor’s formula

t

o(t) = g(z) + (¢ — 2)g/(2) + / (t - u)g"(u) du

x

813



we obtain .
Suplaiai o) = (o) + S, ([ 0= 09" awigi).

By the definition given by (3.1) and Lemma 2.2, for « € [0, 1], n > 2 we have

Snp ( /:(t —u)g”(u) du; g; x) ‘

1S p(gs0:7) — g(2)] <

[n+plgrn,p(q:2)/[n]q [0+ plgrnp(q, ) "
o/ (e ) a
<Sun(| [ 1= ullo @l )
+/ }[n—l—p]qrnp(q, ‘|g )| du
n+plarn.p (a.0)/ [l [n]q
- 2 52
< —_ 2. - _ [n+p]qrn,p(%x) "< §2 Yn an
< [Suplt =% g2) + (o ) gl < 8 (14 )l

On the other hand, by the definition given by (3.1) and Lemma 2.3 we have

S (F: 42| < S (Fi 02| + 201F 1 < 3IL£1,

thus, for = € [0, 1], n > 2 we have

1S p(fia:2) — F(@)] < |Snp(f — g1 0:0)]

+180p(0i:0) 90|+ lo(o) — 1) + (P LB g
<alf—gll+a2(1+2)1g") + ( ;)

Hence, taking infimum on the right hand side over all g € W2, we can get

2

Suplfraia) — 1) < K102 (14 22)) (. 22),

By inequality (2.1), for every ¢ € (0,1) we have

1Snp(f5q:7) = f(2)] < Cun <f75n\/@> +w(f’ %)
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Theorem 3.4. Let f € C'[0,1+p|, z € [0,1],n > 2, ¢ € (0,1). Then we have

[n +plg
2[nlq([n +plg — 1)

where || f'|| = max{|f'(x)|;z € [0,1+ p]}, and 6, is given in Theorem 3.2.

Snp(fi2) — f(@)| < |If I3 + 20,w(f', 0n),

Proof. Let f € C*0,1+ p]. Then for any ¢ € [0,1+ p], x € [0,1] we have

() f(@) - @)t —2) = / (' (u) - /() du.

So, for any § > 0 we get

[f(t) = fz) = f'(2)(t - 2)|

/ () = f'(2)] du| <

<w(f,0)(t — x|+ 671t — 2)?),

hence

1Snp(f(t) = f(2) = f’( )(t = x); ;)]

w(f', 9)( np(|t x|5‘1§$)+671§n,p((t_x)25%$))~

Using the Cauchy-Schwartz inequality, we obtain

§n7p( —z|;q;x \/Snplq, \/Snp t—x)?;q;x),

so we have

|5‘np(f(t)—f(fv) f@)(t = x)iq;2)]

Sw(fs ]t —=[)|t — 2]

(\/ Snp(l;q;2) + 07 \/Snp t—x)%qx )\/Snp t—x)%q; ).

Thus, by Lemma 2.1 and Lemma 2.2, for € [0, 1], n > 2 we get

1Snp(fi:2) — F(@)] < |/ (@)] [Snp(t — 7305 2))|

+w(f’,0)( 1+5_1\/5n,p((t—x)Q;q;w))\/Sn,p((t—x)Q;q;x)
< g
2[n]y([n +plg — 1)

+w(f,8)(1+616,)0,.

Taking 6 = §,,, then from the above inequality we obtain the desired result.

Finally, we give the quantitative Voronovskaja-type asymptotic formula.
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Theorem 3.5. Let x € (0,1], g, € (0,1), ¢, — 1 and ¢} — a as n — oo. For any
f € C?[0,1+p], we have lim [n]q, (Snp(f1qn; )= f(2)) = 3(z = D(f'(z) —2f"(z)).

Proof. Let f € C%[0,1+ p] and = € (0,1] be fixed. For any t € [0,1 + p|, by
the Taylor formula we have

f(z)

St — ) () - ),

f@) = fl@) = f'(@)(t —2) +

where r(t,z) € C[0,1 + p] and tlim r(t,x) = 0. By Lemma 2.1, we get
—T

f(z)

5 Snp((t —2)% qui )

(32)  Sup(fiqniz) = f(z) = f'(2)Snp((t — 2); gnix) +
+ S p(r(t,z)(t — 2)% gn; ).

In view of hm r(t,z) = 0, for any € > 0 there exists a constant § > 0 such that when
teUg(d )—{t|t€ [0,1+ p] and |t — z| < &}, we have |r(¢,x)| < e. Denoting

As(h.2) 1, jt—z| =96
y L) =
’ 0, |[t—z|<d.

then |r(t, z)(t—x)?| < e(t—z)2+Xs(t, ) |7 (t, ) |(t— )2, |Snp (r(t, 2) (t—2)2; gu; )| <
St — 2% i 2) + S p s 6, (s 2)| (¢ — )2 g ).

Since [0, 14+p]\U,(9) is compact, also r(t, ) is bounded on [0, 1+p]. So, there exists
a constant L > 0 such that for any ¢ € [0, 1 + p], we obtain \s(t, z)|r(t, z)|(t — z)? <
L(t — )%, thus

|Snp(r(t,z)(t — x)25 qn; )| < 5Sn,p((t - x)2§ qn; ) + Lgn,p((t - x)45 In; T).

Note that £ > 0 being arbitrary, by Lemma 2.4 we obtain

i [n]g, S (r(t,2)(t = 2)%5 gus 2)| = 0,
0
(3.3) nh_,néo[n]% Sy p(r(t,z)(t — )25 qn; ) = 0.
By equalities (3.2), (3.3) and Lemma 2.4 we can obtain the desired result. O
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