[1] Leon, M. J. De:
Pell's equations and Pell number triples. Fibonacci Q. 14 (1976), 456-460.
MR 0419344
[2] Jacobson, M. J., Williams, H. C.:
Solving the Pell Equation. CMS Books in Mathematics. Springer, New York (2009).
MR 2466979 |
Zbl 1177.11027
[3] Jones, J. P.:
Representation of solutions of Pell equations using Lucas sequences. Acta Acad. Paedagog. Agriensis, Sect. Mat. (N.S.) 30 (2003), 75-86.
MR 2054717 |
Zbl 1047.11017
[6] Keskin, R., Karaatli, O., Şiar, Z.:
On the Diophantine equation $x^{2}-kxy+y^{2}+2^{n}=0$. Miskolc Math. Notes 13 (2012), 375-388.
MR 3002637
[7] Keskin, R., Demirtürk, B.:
Solutions of some Diophantine equations using generalized Fibonacci and Lucas sequences. Ars Comb. 111 (2013), 161-179.
MR 3055272
[9] McDaniel, W. L.:
Diophantine representation of Lucas sequences. Fibonacci Q. 33 (1995), 59-63.
MR 1316283 |
Zbl 0830.11006
[10] Melham, R.:
Conics which characterize certain Lucas sequences. Fibonacci Q. 35 (1997), 248-251.
MR 1465839 |
Zbl 0968.11501
[11] Nagell, T.:
Introduction to Number Theory. John Wiley & Sons, Inc., New York; Almqvist & Wiksell, Stockholm (1951).
MR 0043111 |
Zbl 0042.26702
[12] Ribenboim, P.:
My Numbers, My Friends. Popular Lectures on Number Theory. Springer, New York (2000).
MR 1761897 |
Zbl 0947.11001
[14] Robinowitz, S.:
Algorithmic manipulation of Fibonacci identities. Applications of Fibonacci Numbers. 6 (1996), 389-408 G. E. Bergum, et al. Kluwer Acadademic Publishers, Dordrecht.
DOI 10.1007/978-94-009-0223-7_33 |
MR 1393473
[15] Yuan, P., Hu, Y.:
On the Diophantine equation $x^{2}-kxy+y^{2}+lx=0$, $l\in \{ 1,2,4\}$. Comput. Math. Appl. 61 (2011), 573-577.
MR 2764051 |
Zbl 1217.11031