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Refik Keskin, Esentepe, Zafer Şiar, Gülümbe, Olcay Karaatlı, Esentepe

(Received May 22, 2012)

Abstract. In this study, we determine when the Diophantine equation x2−kxy+y2−2n =
0 has an infinite number of positive integer solutions x and y for 0 6 n 6 10. Moreover, we
give all positive integer solutions of the same equation for 0 6 n 6 10 in terms of generalized
Fibonacci sequence. Lastly, we formulate a conjecture related to the Diophantine equation
x2 − kxy + y2 − 2n = 0.
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1. Introduction

In [8], the authors dealt with the equation

(1.1) x2 − kxy + y2 + x = 0

and they showed that it has no positive integer solutions x and y for k > 3 but it has

an infinite number of positive integer solutions for k = 3. In [5], Keskin considered

the Diophantine equations

x2 − kxy + y2 ± x = 0,(1.2)

x2 − kxy − y2 ± y = 0,(1.3)

and showed that when k > 3, x2 − kxy + y2 + x = 0 has no positive integer solutions

but the equation x2 − kxy + y2 − x = 0 has positive integer solutions and equation

(1.3) has positive integer solutions for k > 1.

In [15], Yuan and Hu determined when the following two equations

(1.4) x2 − kxy + y2 + 2x = 0
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and

(1.5) x2 − kxy + y2 + 4x = 0

have an infinite number of positive integer solutions x and y. They showed that

equation (1.4) has an infinite number of positive integer solutions if and only if

k = 3, 4 and equation (1.5) has an infinite number of positive integer solutions if and

only if k = 3, 4, 6.

In [6], the authors considered the equation

(1.6) x2 − kxy + y2 + 2rx = 0,

where k is a positive integer and r is a nonnegative integer. In order to determine

when equation (1.6) has an infinite number of positive integer solutions, the authors

investigated when the equation

(1.7) x2 − kxy + y2 + 2n = 0

has an infinite number of positive integer solutions for nonnegative integer n. Also

they found all positive integer solutions of equation (1.7) for 0 6 n 6 10.

Let us consider the equation

(1.8) x2 − kxy + y2 − 2rx = 0,

where k is a positive integer and r is a nonnegative integer. In order to determine

when equation (1.8) has an infinite number of positive integer solutions, it is sufficient

to determine when the equation

(1.9) x2 − kxy + y2 − 2n = 0

has an infinite number of positive integer solutions for nonnegative integer n. Now

assume that equation (1.8) has positive integer solutions x and y. Then it follows

that x | y2 and thus y2 = xz for some positive integer z. A simple computation shows

that gcd(x, z) = 2j for some nonnegative integer j. Thus x = 2ja2 and z = 2jb2 for

some positive integers a and b with gcd(a, b) = 1. Then it follows that y = 2jab.

Substituting these values of x and y into equation (1.8), we obtain

a2 − kab + b2 − 2r−j = 0.

Therefore it is sufficient to know when x2 − kxy + y2 − 2r−j = 0 has an infinite

number of positive integer solutions for 0 6 j 6 r.
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Now, we begin with some well known elementary properties of Pell equations. Let

d be a positive integer which is not a perfect square and N be any nonzero fixed

integer. Then the equation x2 − dy2 = N is known as Pell equation. For N = ±1,

the equation x2−dy2 = ±1 is known as classical Pell equation. We use the notations

(x, y) and x+y
√

d interchangeably to denote solutions of the equation x2−dy2 = N.

If x and y are both positive, we say that x + y
√

d is a positive solution to the

equation x2−dy2 = N. The least positive integer solution x1 +y1

√
d to the equation

x2 − dy2 = N is called the fundamental solution to this equation. If x1 + y1

√
d

is the fundamental solution to the equation x2 − dy2 = −1, it is well known that

(x1 + y1

√
d)2 is the fundamental solution to the equation x2 − dy2 = 1. Moreover, if

x1 +y1

√
d is the fundamental solution to the equation x2−dy2 = 1, then all positive

integer solutions to the equation x2 − dy2 = 1 are given by

(1.10) xn + yn

√
d =

(

x1 + y1

√
d
)n

with n > 1. Also, the solutions (xn, yn) satisfy the following recurrence relations

(1.11) xn+1 = 2x1xn − xn−1,

and

(1.12) yn+1 = 2x1yn − yn−1.

For more information about Pell equations, one can consult [11], [13], and [2].

In section 2, we determine when equation (1.9) has an infinite number of positive

integer solutions x and y for 0 6 n 6 10. Then in section 3, we give all positive

integer solutions to equation (1.9) for 0 6 n 6 10.

2. Main theorems

In this section, we determine when equation (1.9) has an infinite number of positive

integer solutions x and y for 0 6 n 6 10. First, we give the following lemma and

theorem without proof, which will be needed in the proof of the main theorems. The

proof of the lemma can be found in [6], the theorem is given in [11].

Lemma 2.1. Let d > 2. If u1 + v1

√
d is the fundamental solution of the equation

u2−dv2 = ±2, then 1
2 (u2

1+dv2
1)+u1v1

√
d is the fundamental solution of the equation

x2 − dy2 = 1.
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Theorem 2.1. If x1 and y1 are natural numbers satisfying the inequality

(2.1) x1 >
y2
1

2
− 1

and if α = x1 + y1

√
d is a solution of the equation x2 − dy2 = 1, then α is the

fundamental solution of this equation.

Theorem 2.2. The equation x2 − kxy + y2 − 1 = 0 has an infinite number of

positive integer solutions x and y if and only if k > 1.

P r o o f. By Theorem 3.10 given in [5], x2 − kxy + y2 − 1 = 0 has an infinite

number of positive integer solutions x and y when k > 3. It is clear that the equation

x2 − kxy + y2− 1 = 0 has an infinite number of positive integer solutions x and y for

k = 2. For k = 3, the equation x2−3xy+y2−1 = 0 has an infinite number of positive

integer solutions (x, y) = (F2n+2, F2n) with n > 1 (see [5], Theorem 1.5). If k = 1,

the equation becomes x2 − xy + y2 − 1 = 0, which implies that (2x − y)2 + 3y2 = 4.

Therefore x = 1 and y = 1. This means that the equation x2 − kxy + y2 − 1 = 0 has

not an infinite number of positive integer solutions x and y for k = 1. �

Theorem 2.3. The equation x2−kxy+y2−2 = 0 has no positive integer solutions

x and y.

P r o o f. Assume that x2−kxy+y2−2 = 0 for some positive integers x and y. It

is clear that x and y must be odd. Then it follows that k is even. Let k = 2t for some

positive integer t. Then x2 − kxy + y2 − 2 = 0 implies that (x− ty)2 − (t2 − 1)y2 = 2.

Let u1 + v1

√
t2 − 1 be the fundamental solution of the equation u2 − (t2 − 1)v2 =

2. Then from Lemma 2.1, it follows that 1
2 (u2

1 + (t2 − 1)v2
1) + u1v1

√
t2 − 1 is the

fundamental solution of the equation x2 − (t2 − 1)y2 = 1. For t > 1, since (t, 1) is

the fundamental solution of the equation x2 − (t2 − 1)y2 = 1 by Theorem 2.1, we get
1
2 (u2

1 + (t2 − 1)v2
1) = t and u1v1 = 1. From this, it follows that t = 2. Substituting

this value of t into (x − ty)2 − (t2 − 1)y2 = 2, we get (x − 3y)2 − 3y2 = 2. But

this equation has no positive integer solutions since (x − 3y)2 ≡ 2 (mod 3) which is

impossible. �

Theorem 2.4. The equation x2 − kxy + y2 − 4 = 0 has an infinite number of

positive integer solutions x and y if and only if k > 1. Also, x and y may be odd

only when k = 2.

P r o o f. Assume that x2−kxy+y2−4 = 0 for some positive integers x and y. If

x is even, then y is even and thus x = 2a and y = 2b for some positive integers a and

b. Then it follows that a2−kab+b2−1 = 0, which implies that k > 1 by Theorem 2.2.
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Now assume that x and y are odd. Then k is even and 4 ∤ k. Therefore k = 2t for

some odd positive integer t. Completing the square gives (x− ty)2 − (t2 − 1)y2 = 4.

Since 4 | t2 −1, it follows that x− ty = 2m and thus m2 − 1
4 (t2 −1)y2 = 1. For t > 1,

(t, 2) is the fundamental solution of the equation x2− 1
4 (t2−1)y2 = 1 by Theorem 2.1.

From equation (1.12), if (xn, yn) is the solution of the equation x2 − 1
4 (t2 − 1)y2 = 1,

then yn is even. But this is impossible since y is odd. When t = 1, i.e., k = 2, it

is clear that the equation x2 − kxy + y2 − 4 = 0 has an infinite number of positive

integer solutions x and y. �

Theorem 2.5. The equation x2 − kxy + y2 − 8 = 0 has an infinite number of

positive integer solutions x and y if and only if k = 6.

P r o o f. Assume that x2 − kxy + y2 − 8 = 0 for some positive integers x and y.

If x is even, then y is even and thus x = 2a and y = 2b for some positive integers

a and b. Thus we get a2 − kab + b2 − 2 = 0. By Theorem 2.3, this equation has

no positive integer solutions. Now assume that x and y are odd. Then k is even

and 4 ∤ k. Thus k = 2t for some odd positive integer t. Completing the square gives

(x − ty)2 − (t2 − 1)y2 = 8, which implies that x − ty = 2m for some positive integer

m. Thus we get m2 − 1
4 (t2 − 1)y2 = 2. Let d = 1

4 (t2 − 1) and assume that u1 + v1

√
d

is the fundamental solution of the equation u2 − dv2 = 2. Then by Lemma 2.1,
1
2 (u2

1 + dv2
1) + u1v1

√
d is the fundamental solution of the equation x2 − dy2 = 1.

For t > 1, since (t, 2) is the fundamental solution of the equation x2 − dy2 = 1 by

Theorem 2.1, we get 1
2 (u2

1 + dv2
1) + u1v1

√
d = t + 2

√
d. From this, it follows that

u1v1 = 2 and u2
1 + 1

4 (t2 − 1)v2
1 = 2t. Solving these equations, we see that t = 3 and

t = 5, and thus we get k = 6 and k = 10. But it can be seen that the equation

x2 − kxy + y2 − 8 = 0 has no positive integer solutions for k = 10. �

The proofs of the following theorems are similar to those of the above theorems

and therefore we omit them.

Theorem 2.6. The equation x2 − kxy + y2 − 16 = 0 has an infinite number of

positive integer solutions x and y if and only if k > 1. Also, x and y may be odd

only when k = 2, 14.

Theorem 2.7. The equation x2 − kxy + y2 − 32 = 0 has an infinite number of

positive integer solutions x and y if and only if k = 6, 30.

Theorem 2.8. The equation x2 − kxy + y2 − 64 = 0 has an infinite number of

positive integer solutions x and y if and only if k > 1. Also, x and y may be odd

only when k = 2, 18, 62.
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Now, we consider the equation

(2.2) x2 − dy2 = N,

where N 6= 0 and d is a positive integer which is not a perfect square. If u2−dv2 = N,

then we say that α = u + v
√

d is a solution to equation (2.2). Let α1 and α2 be any

two solutions to equation (2.2). Then α1 and α2 are called associated solutions if

there exists a solution α to x2 − dy2 = 1 such that

α1 = αα2.

The set of all solutions associated with each other forms a class of solutions to

equation (2.2). If K is a class, then K = {u − v
√

d; u + v
√

d ∈ K} is also a class.
We say that the class K is ambiguous if K = K.

Now, we give the following definition and theorem from [1].

Definition 2.1. Assume that N > 0. Let u0 + v0

√
d be a solution to equation

(2.2) given in a class K such that u0 is the least positive value of u which occurs

in K. If K is not ambiguous, then the number v0 is uniquely determined. If K

is ambiguous we get an uniquely determined v0 by prescribing that v0 > 0. Then

u0 + v0

√
d is called the fundamental solution in its class K.

Theorem 2.9. If u+v
√

d is a solution in nonnegative integers to the Diophantine

equation u2−dv2 = N, where N > 1, then there exists a nonnegative integer m such

that

u + v
√

d = (u1 + v1

√
d)(x1 + y1

√
d)m

where u1 + v1

√
d is the fundamental solution to the class of solutions of the equation

u2 − dv2 = N to which u + v
√

d belongs and x1 + y1

√
d is the fundamental solution

to the equation x2 − dy2 = 1.

In [11], Nagell gives the fundamental solution in a given class K in a different way.

We give the following theorem from [11].

Theorem 2.10. Let N > 0 and x1 + y1

√
d be the fundamental solution to

x2−dy2 = 1. If u0 +v0

√
d is the fundamental solution to the equation u2−dv2 = N

in its class, then

0 6 v0 6
y1

√
N

√

2(x1 + 1)
and 0 < |u0| 6

√

1

2
(x1 + 1)N.

Now we can give the following theorems.
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Theorem 2.11. The equation x2 − kxy + y2 − 128 = 0 has an infinite number of

positive integer solutions x and y if and only if k = 6, 30, 126.

P r o o f. Assume that x2−kxy+y2−128 = 0 for some positive integers x and y.

If x is even, then y is even and thus x = 2a and y = 2b for some positive integers a

and b. Substituting these values of x and y into the equation x2−kxy+y2−128 = 0,

we get a2 − kab + b2 − 32 = 0, which implies that k = 6, 30 by Theorem 2.7. Now

assume that x and y are odd. Then k is even and 4 ∤ k. Thus k = 2t for some

positive odd integer t. Completing the square gives (x − ty)2 − (t2 − 1)y2 = 128.

Since 8 | t2 − 1, we see that x − ty = 4m and thus we get m2 − 1
16 (t2 − 1)y2 = 8.

Now we consider the equation

(2.3) u2 − t2 − 1

16
v2 = 8.

Let u0 + v0

√
d be the fundamental solution to equation (2.3) in a given class K.

Since (t, 4) is the fundamental solution to the equation x2 − 1
16 (t2 − 1)y2 = 1 for

t > 7 by Theorem 2.1, we get

0 6 v0 6
4
√

8
√

2(t + 1)
6

4
√

8
√

2(9 + 1)
< 3

by Theorem 2.10. If (m, y) is a solution in the class K, then since y is odd, also v0

is odd. This implies that v0 = 1. Substituting this value of v0 into equation (2.3),

we get (4u − t)(4u + t) = 127. A simple computation shows that t = 63 and thus

k = 126. Now assume that 1 6 t 6 7. Since 1
16 (t2−1) is not an integer for 1 < t < 7,

we get t = 7. But when t = 7, it follows that m2 − 3y2 = 8, which is impossible since

y is odd. Also when t = 1, it can be easily seen that equation (2.3) has no positive

integer solutions. This completes the proof. �

Theorem 2.12. The equation x2 − kxy + y2 − 256 = 0 has an infinite number of

positive integer solutions x and y if and only if k > 1. Also, x and y may be odd

only when k = 2, 46, 82, 254.

P r o o f. Assume that x2−kxy+y2−256 = 0 for some positive integers x and y.

If x is even, then y is even and thus x = 2a and y = 2b for some positive integers a

and b. Substituting these values of x and y into the equation x2−kxy+y2−256 = 0,

we get a2−kab+b2−64 = 0, which implies that k > 1 by Theorem 2.8. Now assume

that x and y are odd. Then k is even and 4 ∤ k. Thus k = 2t for some positive odd

integer t. Completing the square gives (x − ty)2 − (t2 − 1)y2 = 256. Since 8 | t2 − 1,
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we see that x − ty = 4m and thus we get m2 − 1
16 (t2 − 1)y2 = 16. Now we consider

the equation

(2.4) u2 − t2 − 1

16
v2 = 16.

Let u0 + v0

√
d be the fundamental solution to equation (2.4) in a given class K.

Since (t, 4) is the fundamental solution to the equation x2 − 1
16 (t2 − 1)y2 = 1 for

t > 7 by Theorem 2.1, we get

0 6 v0 6
4
√

16
√

2(t + 1)
6

4
√

16
√

2(9 + 1)
< 4

by Theorem 2.10. If (m, y) is a solution in the class K, then, since y is odd, also v0

is odd. This implies that v0 = 1 or v0 = 3. Substituting the value of v0 = 1 into

equation (2.4), we get (4u − t)(4u + t) = 255. A simple computation shows that

t = 23, t = 41 or t = 127. Thus we get k = 46, k = 82, or k = 254. Now assume that

1 6 t 6 7. But 1
16 (t2 − 1) is not an integer for 1 < t < 7. When t = 7, we get

u2 − 3v2 = 16

from equation (2.4). Thus it follows that u2 − 3v2 ≡ 0 (mod 4), which is impossible

since v is odd. When t = 1, i.e., k = 2, it can be easily seen that equation (2.4) has

an infinite number of positive integer solution x and y. Substituting the value of

v0 = 3 into equation (2.4), we get (4u − 3t)(4u + 3t) = 247. A simple computation

shows that t = 41, or t = 1 and thus k = 82, or k = 2. This completes the proof. �

Since the proofs of the following theorems are similar to those of the above theo-

rems, we omit them.

Theorem 2.13. The equation x2 − kxy + y2 − 512 = 0 has an infinite number of

positive integer solutions x and y if and only if k = 6, 30, 66, 126, 510.

Theorem 2.14. The equation x2 − kxy + y2 − 1024 = 0 has an infinite number

of positive integer solutions x and y if and only if k > 1. Also x and y may be odd

only when k = 2, 46, 66, 82, 338, 1022.

Now, if r > 0 is an even integer, then we see that the equation x2−kxy+y2−2r = 0

has an infinite number of positive integer solutions x and y for k = 2. Also, if r > 1 is

an odd integer, then we see that the equation x2 − kxy + y2 − 2r = 0 has no positive

integer solutions x and y for k = 2. Therefore, from now on, we will assume that

k 6= 2.
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3. Solutions of some of the equations x2 − kxy + y2 − 2n = 0

In this section, we will give solutions of the equation x2 − kxy + y2 − 2n = 0 for

0 6 n 6 10. Solutions of the equation x2−kxy+y2−2n = 0 are related to the gener-

alized Fibonacci and Lucas numbers. We briefly introduce the generalized Fibonacci

and Lucas sequences (Un(k, s)) and (Vn(k, s)). Let k and s be two integers with

k2 + 4s > 0. Generalized Fibonacci sequence is defined by U0(k, s) = 0, U1(k, s) = 1

and Un+1(k, s) = kUn(k, s) + sUn−1(k, s) for n > 1 and generalized Lucas sequence

is defined by V0(k, s) = 2, V1(k, s) = k and Vn+1(k, s) = kVn(k, s) + sVn−1(k, s) for

n > 1. Generalized Fibonacci and Lucas numbers for negative subscript are defined

as

(3.1) U
−n(k, s) =

−Un(k, s)

(−s)n
and V

−n(k, s) =
Vn(k, s)

(−s)n

for n > 1. We will use Un and Vn instead of Un(k, s) and Vn(k, s), respectively. For

s = −1, we represent (Un) and (Vn) by (un(k,−1)) and (vn(k,−1)) or briefly by (un)

and (vn), respectively. We see from equation (3.1) that

u
−n = −un(k,−1) and v

−n = vn(k,−1)

for all n ∈ Z. For k = s = 1, the sequences (Un) and (Vn) are called Fibonacci and

Lucas sequences and they are denoted as (Fn) and (Ln), respectively. For k = 2 and

s = 1, the sequences (Un) and (Vn) are called Pell and Pell Lucas sequences and they

are denoted as (Pn) and (Qn), respectively. Let α and β be the roots of the equation

x2 − kx − s = 0. Then it is well known that

(3.2) Un =
αn − βn

α − β
and Vn = αn + βn

where α = 1
2 (k+

√
k2 + 4s) and β = 1

2 (k−
√

k2 + 4s). The above identities are known

as Binet’s formulae. Clearly α + β = k, α− β =
√

k2 + 4s, and αβ = −s. Moreover,

it is well known that

U2
n − kUnUn−1 − U2

n−1 = (−1)n−1,(3.3)

vn = un+1 − un−1,

and

u2
n − kunun−1 + u2

n−1 = 1,(3.4)

where Un = Un(k, 1) and un = un(k,−1). For more information about generalized

Fibonacci and Lucas sequences, one can consult [14], [4], [12], [7], [9], and [10].
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Now, we give the following theorem that help us to find solutions of some of the

equations x2 − kxy + y2 − 2n = 0. Since the proof of this theorem can be found in

[5], [7], [9], [10], and [3], we omit it here. Before giving the theorem, we have to state

that some of the following equations have positive odd integer solutions or positive

even integer solutions. By the positive odd integer solutions x and y of the equation

x2 − kxy + y2 − 2n = 0 we mean that x and y are solutions of this equation and

x and y are both odd. The positive even integer solutions x and y of the equation

x2 − kxy + y2 − 2n = 0 are defined similarly.

Theorem 3.1. Let k > 3. Then all positive integer solutions of the equation

x2 − kxy + y2 − 1 = 0 are given by (x, y) = (un, un−1) with n > 1, where un =

un(k,−1).

The proof of the following corollary can be done by induction on r.

Corollary 3.1. Let r > 1 be an integer. Then all positive even integer solutions of

the equation x2−kxy+y2−22r = 0 are given by (x, y) = (2run(k,−1), 2run−1(k,−1))

with n > 1.

Theorem 3.2. Let r > 2 be an integer. Then all positive integer solu-

tions of the equation x2 − (22r − 2)xy + y2 − 22r = 0 are given by (x, y) =

(un+1(2
r,−1), un−1(2

r,−1)) with n > 1.

P r o o f. Assume that x2 − (22r − 2)xy + y2 − 22r = 0 for some positive integers

x and y. It is easily seen that 2r | x + y. Let u = (x + y)/2r and v = y. Then we

get x = 2ru − v and y = v. Substituting these values of x and y into the equation

x2 − (22r − 2)xy + y2 − 22r = 0, we obtain

(2ru − v)2 − (22r − 2)(2ru − v)v + v2 − 22r = 0

and this implies that u2 − 2ruv + v2 − 1 = 0. Therefore, by Theorem 3.1, we get

u = un(2r,−1) and v = un−1(2
r,−1) with n > 1. Thus x = 2run−un−1 = un+1 and

y = un−1. That is, (x, y) = (un+1(2
r,−1), un−1(2

r,−1)) with n > 1. Conversely, if

(x, y) = (un+1, un−1), then from identity (3.4), it follows that x2− (22r −2)xy+y2−
22r = 0. �

Corollary 3.2. All positive integer solutions of the equation x2−14xy+y2−16 =

0 are given by (x, y) = (un+1, un−1) with n > 1, where un = un(4,−1).

Corollary 3.3. All positive integer solutions of the equation x2−62xy+y2−64 =

0 are given by (x, y) = (un+1, un−1) with n > 1, where un = un(8,−1).
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Corollary 3.4. All positive integer solutions of the equation x2 − 254xy + y2 −
256 = 0 are given by (x, y) = (un+1, un−1) with n > 1, where un = un(16,−1).

Corollary 3.5. All positive integer solutions of the equation x2 − 1022xy + y2 −
1024 = 0 are given by (x, y) = (un+1, un−1) with n > 1, where un = un(32,−1).

Theorem 3.3. Let r > 1 be an odd integer. Then all positive integer solutions of

the equation x2−(2r−2)xy+y2−2r = 0 are given by (x, y) = (un+1+un, un+un−1)

with n > 1, where un = un(2r − 2,−1).

P r o o f. Assume that x2 − (2r − 2)xy + y2 − 2r = 0 for some positive integers

x and y. We see that x and y have the same parity. Without loss of generality, we

may suppose x > y. It can be easily shown that 2(r+1)/2 | x + y. Moreover, it can be

seen that
2r

4
(x − y)2 −

(2r

4
− 1

)

(x + y)2 = 2r.

This implies that
(x − y

2

)2

− (2r−1 − 2)
( x + y

2(r+1)/2

)2

= 1.

Since α =
(

2r−1−1+2(r−1)/2
√

2r−1 − 2
)

is the fundamental solution to the equation

x2 − (2r−1 − 2)y2 = 1 by Theorem 2.1, it follows from (1.10) that

x − y

2
= xn and

x + y

2(r+1)/2
= yn

for some n > 1, where

xn + yn

√

2r−1 − 2 = αn.

It is easily seen that xn = 1
2vn(2r − 2,−1) and yn = 2(r−1)/2un(2r − 2,−1). Then

we get x = 1
2 (vn + 2run) and y = 1

2 (2run − vn). Since vn = un+1 − un−1, it follows

that x = 1
2 (un+1 − un−1 + 2run) = 1

2 (un+1 + un+1 + 2un) = un+1 + un. In a similar

way, we see that y = un + un−1. This shows that (x, y) = (un+1 + un, un + un−1)

with n > 1. Conversely, if (x, y) = (un+1 + un, un + un−1), then from identity (3.4),

it follows that x2 − (2r − 2)xy + y2 − 2r = 0. �

Corollary 3.6. All positive integer solutions of the equation x2−6xy+y2−8 = 0

are given by (x, y) = (un+1 + un, un + un−1) with n > 1, where un = un(6,−1).

Corollary 3.7. All positive integer solutions of the equation x2−30xy+y2−32 =

0 are given by (x, y) = (un+1 + un, un + un−1) with n > 1, where un = un(30,−1).
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Corollary 3.8. All positive integer solutions of the equation x2 − 126xy + y2 −
128 = 0 are given by (x, y) = (un+1 + un, un + un−1) with n > 1, where un =

un(126,−1).

Corollary 3.9. All positive integer solutions of the equation x2 − 510xy + y2 −
512 = 0 are given by (x, y) = (un+1 + un, un + un−1) with n > 1, where un =

un(510,−1).

In order to find all positive odd integer solutions of the equations

x2 − 1
3 (2r − 10)xy + y2 − 2r = 0,

x2 − 1
5 (2r − 26)xy + y2 − 2r = 0,

x2 − 1
7 (2r − 50)xy + y2 − 2r = 0,

and

x2 − 1
11 (2r − 122)xy + y2 − 2r = 0,

we need Theorem 2.9.

Theorem 3.4. Let r > 4 be an even integer. Then all positive odd integer

solutions of the equation x2 − 1
3 (2r − 10)xy + y2 − 2r = 0 are given by (x, y) =

(un+2 + 3un+1, un+1 + 3un) with n > 0 or (x, y) = (3un+1 + un, 3un + un−1) with

n > 0, where un = un(1
3 (2r − 10),−1).

P r o o f. Assume that x2 − 1
3 (2r − 10)xy + y2 − 2r = 0 for some positive integers

x and y. Completing the square gives

(x − 1
3 (2r−1 − 5)y)2 − 1

3 (2r−1 − 8) · 1
3 (2r−1 − 2)y2 = 2r.

Without loss of generality, we may suppose x > 1
3 (2r−1 − 5)y . Since r > 4, we get

x − 1
3 (2r−1 − 5)y = 4m for some positive integer m. Rearranging the equation gives

(3.5) m2 − (2r−1 − 8)(2r−1 − 2)

144
y2 = 2r−4.

Let d = (2r−1 − 8)(2r−1 − 2)/144. Then we get

(3.6) m2 − dy2 = 2r−4

It can be seen from Theorem 2.10 that equation (3.6) has two solution classes. The

fundamental solutions of these classes are

2r−1 + 4

12
+
√

d and
2r−1 + 4

12
−
√

d.
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By Theorem 2.9, all positive integer solutions of equation (3.6) are given by

an + bn

√
d =

(2r−1 + 4

12
+
√

d
)

(xn + yn

√
d)

with n > 0 or

cn + dn

√
d =

(2r−1 + 4

12
−
√

d
)

(xn + yn

√
d)

with n > 1, where x2
n − dy2

n = 1. Since the fundamental solution of this equation is

α = 1
3 (2r−1 − 5) + 4

√
d, we get xn + yn

√
d = αn and therefore xn = 1

2 (αn + βn) and

yn = 1
2 (αn−βn)

√
d, where β = 1

3 (2r−1−5)−4
√

d. Thus we get bn = 1
12 (2r−1+4)yn+

xn and dn = 1
12 (2r−1 + 4)yn − xn. We see that xn = 1

2vn(1
3 (2r − 10),−1) and

yn = 4un(1
3 (2r − 10),−1). This shows that bn = 1

3 (2r−1 + 4)un + 1
2vn = un+1 + 3un

with n > 0 and dn = 1
3 (2r−1 + 4)un − 1

2vn = 3un + un−1 with n > 1. Substituting

the values of y into equation (3.5), we get (x, y) = (un+2 + 3un+1, un+1 + 3un) with

n > 0 or (x, y) = (3un+1 + un, 3un + un−1) with n > 0. Conversely, if (x, y) =

(un+2 + 3un+1, un+1 + 3un) with n > 0 or (x, y) = (3un+1 + un, 3un + un−1) with

n > 0, then from identity (3.4), it follows that x2 − 1
3 (2r − 10)xy + y2 − 2r = 0. �

Corollary 3.10. All positive odd integer solutions of the equation x2 − 18xy +

y2 − 64 = 0 are given by (x, y) = (un+2 + 3un+1, un+1 + 3un) with n > 0 or

(x, y) = (3un+1 + un, 3un + un−1) with n > 0, where un = un(18,−1).

Corollary 3.11. All positive odd integer solutions of the equation x2 − 82xy +

y2 − 256 = 0 are given by (x, y) = (un+2 + 3un+1, un+1 + 3un) with n > 0 or

(x, y) = (3un+1 + un, 3un + un−1) with n > 0, where un = un(82,−1).

Corollary 3.12. All positive odd integer solutions of the equation x2 − 338xy +

y2 − 1024 = 0 are given by (x, y) = (un+2 + 3un+1, un+1 + 3un) with n > 0 or

(x, y) = (3un+1 + un, 3un + un−1) with n > 0, where un = un(338,−1).

We will give the following theorems without proof since their proofs are similar to

that of Theorem 3.4.

Theorem 3.5. Let r > 8 be an integer and 4 | r. Then all positive odd integer

solutions of the equation x2 − 1
5 (2r − 26)xy + y2 − 2r = 0 are given by (x, y) =

(un+2 + 5un+1, un+1 + 5un) with n > 0 or (x, y) = (5un+1 + un, 5un + un−1) with

n > 0, where un = un(1
5 (2r − 26),−1).
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Corollary 3.13. All positive odd integer solutions of the equation x2 − 46xy +

y2 − 256 = 0 are given by (x, y) = (un+2 + 5un+1, un+1 + 5un) with n > 0 or

(x, y) = (5un+1 + un, 5un + un−1) with n > 0, where un = un(46,−1).

Theorem 3.6. Let r > 9 be an integer and 3 | r. Then all positive odd integer

solutions of the equation x2 − 1
73 (2r − 50)xy + y2 − 2r = 0 are given by (x, y) =

(un+2 + 7un+1, un+1 + 7un) with n > 0 or (x, y) = (7un+1 + un, 7un + un−1) with

n > 0, where un = un(1
7 (2r − 50),−1).

Corollary 3.14. All positive odd integer solutions of the equation x2 − 66xy +

y2 − 512 = 0 are given by (x, y) = (un+2 + 7un+1, un+1 + 7un) with n > 0 or

(x, y) = (7un+1 + un, 7un + un−1) with n > 0, where un = un(66,−1).

Theorem 3.7. Let r > 10 be an integer and 10 | r. Then all positive odd integer

solutions of the equation x2 − 1
11 (2r − 122)xy + y2 − 2r = 0 are given by (x, y) =

(un+2 + 11un+1, un+1 + 11un) with n > 0 or (x, y) = (11un+1 + un, 11un + un−1)

with n > 0, where un = un( 1
11 (2r − 122),−1).

Corollary 3.15. All positive odd integer solutions of the equation x2 − 82xy +

y2 − 1024 = 0 are given by (x, y) = (un+2 + 11un+1, un+1 + 11un) with n > 0 or

(x, y) = (11un+1 + un, 11un + un−1) with n > 0, where un = un(82,−1).

Theorem 3.8. All positive odd integer solutions of the equation x2 − 46xy +

y2 − 1024 = 0 are given by (x, y) = (3un+2 + 7un+1, 3un+1 + 7un) with n > 0 or

(x, y) = (7un+1 + 3un, 7un + 3un−1) with n > 0, where un = un(46,−1).

Theorem 3.9. All positive odd integer solutions of the equation x2 − 66xy +

y2 − 1024 = 0 are given by (x, y) = (3un+2 + 5un+1, 3un+1 + 5un) with n > 0 or

(x, y) = (5un+1 + 3un, 5un + 3un−1) with n > 0, where un = un(66,−1).

Since all positive integer solutions of the equations

x2 − kxy + y2 − 32 = 0, k ∈ {6},
x2 − kxy + y2 − 128 = 0, k ∈ {6, 30},

and

x2 − kxy + y2 − 512 = 0, k ∈ {6, 30, 126}

can be given easily by using the previous theorems, we do not give their solutions.

From the above theorems, we see that when r is odd (r is even) and k > 2r−2, the

equation x2 − kxy + y2 = 2r has no positive integer (odd positive integer) solutions.

At this point, we can give the following conjecture.
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Conjecture 3.1. (i) Let r be an odd integer and r > 2. If k > 2r − 2, then the

equation x2 − kxy + y2 = 2r has no positive integer solutions. If k 6 2r − 2 and the

equation x2 − kxy + y2 = 2r has a solution, then k is even.

(ii) Let r be an even integer. If k > 2r−2, then the equation x2−kxy+y2 = 2r has

no positive odd integer solutions. If k 6 2r − 2 and the equation x2 − kxy + y2 = 2r

has a positive odd integer solution, then k is even.
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e-mail: zafer.siar@bilecik.edu.tr; O l c a y K a r a a t l i, Sakarya University, Sakarya,
Turkey, e-mail: okaraatli@sakarya.edu.tr.

797


		webmaster@dml.cz
	2020-07-03T20:41:38+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




