[2] Ammar, F., Ejbehi, Z., Makhlouf, A.:
Cohomology and deformations of Hom-algebras. J. Lie Theory 21 (2011), 813-836.
MR 2917693 |
Zbl 1237.17003
[4] Benayadi, S., Makhlouf, A.: Hom-Lie algebras with symmetric invariant nondegenerate bilinear forms. Submitted to J. Geom. Phys.
[6] Hu, N.:
$q$-Witt algebras, $q$-Lie algebras, $q$-holomorph structure and representations. Algebra Colloq. 6 (1999), 51-70.
MR 1680657 |
Zbl 0943.17007
[8] Larsson, D., Silvestrov, S. D.:
Quasi-Lie algebras. Noncommutative Geometry and Representation Theory in Mathematical Physics. Satellite conference to the fourth European congress of mathematics, July 5-10, 2004, Karlstad, Sweden. Contemporary Mathematics 391 J. Fuchs American Mathematical Society Providence, RI (2005), 241-248.
MR 2184027 |
Zbl 1105.17005
[12] Makhlouf, A.:
Paradigm of nonassociative Hom-algebras and Hom-superalgebras. Proceedings of Jordan Structures in Algebra and Analysis Meeting. Tribute to El Amin Kaidi for his 60th birthday, Almería, Spain, May 20-22, 2009 J. Carmona Tapia et al. Univ. de Almería, Departamento de Álgebra y Análisis Matemático Almería (2010), 143-177.
MR 2648355 |
Zbl 1252.17001
[14] Makhlouf, A., Silvestrov, S.:
Hom-Lie admissible Hom-coalgebras and Hom-Hopf algebras. Generalized Lie Theory in Mathematics, Physics and Beyond S. Silvestrov et al. Springer Berlin (2009), 189-206.
MR 2509148 |
Zbl 1173.16019
[17] Scheunert, M.:
The Theory of Lie Superalgebras. An Introduction. Lecture Notes in Mathematics 716. Springer Berlin (1979).
DOI 10.1007/BFb0070929 |
MR 0537441
[22] Yau, D.:
Hom-bialgebras and comodule Hom-algebras. Int. Electron. J. Algebra 8 (2010), 45-64.
MR 2660540 |
Zbl 1253.16032
[23] Yau, D.:
The Hom-Yang-Baxter equation, Hom-Lie algebras, and quasi-triangular bialgebras. J. Phys. A, Math. Theor. 42 (2009), Article ID 165202, 12 pages.
MR 2539278 |
Zbl 1179.17001