[2] Bögelein, V., Duzaar, F., Mingione, G.:
Degenerate problems with irregular obstacles. J. Reine Angew. Math. 650 (2011), 107-160.
MR 2770559 |
Zbl 1218.35088
[7] Capogna, L., Danielli, D., Pauls, S. D., Tyson, J. T.:
An Introduction to the Heisenberg Group and the Sub-Riemannian Isoperimetric Problem. Progress in Mathematics 259. Birkhäuser Basel (2007).
MR 2312336
[8] Choe, H. J.:
A regularity theory for a general class of quasilinear elliptic partial differential equations and obstacle problems. Arch. Ration. Mech. Anal. 114 (1991), 383-394.
DOI 10.1007/BF00376141 |
MR 1100802 |
Zbl 0733.35024
[12] Danielli, D., Garofalo, N., Petrosyan, A.:
The sub-elliptic obstacle problem: $\mathcal{C}^{1, \alpha}$ regularity of the free boundary in Carnot groups of step two. Adv. Math. 211 (2007), 485-516.
DOI 10.1016/j.aim.2006.08.008 |
MR 2323535
[13] DiBenedetto, E., Manfredi, J.:
On the higher integrability of the gradient of weak solutions of certain degenerate elliptic systems. Am. J. Math. 115 (1993), 1107-1134.
DOI 10.2307/2375066 |
MR 1246185 |
Zbl 0805.35037
[17] Domokos, A., Manfredi, J. J.:
$C^{1,\alpha}$-regularity for $p$-harmonic functions in the Heisenberg group for $p$ near $2$. The $p$-harmonic Equation and Recent Advances in Analysis. Proceedings of the 3rd Prairie Analysis Seminar, Manhattan, KS, USA, October 17-18, 2003 Contemporary Mathematics 370 American Mathematical Society, Providence P. Poggi-Corradini (2005), 17-23.
MR 2126699 |
Zbl 1073.22004
[20] Fuchs, M., Mingione, G.:
Full $C^{1,a}$-regularity for free and constrained local minimizers of elliptic variational integrals with nearly linear growth. Manuscr. Math. 102 (2000), 227-250.
DOI 10.1007/s002291020227 |
MR 1771942
[22] Gromov, M.:
Carnot-Carathéodory spaces seen from within. Sub-Riemannian Geometry. Proceedings of the Satellite Meeting of the 1st European Congress of Mathematics `Journées Nonholonomes: Géométrie Sous-Riemannienne, Théorie du Contrôle, Robotique', Paris, France, June 30--July 1, 1992 A. Bellaï che et al. Progress in Mathematics 144 Birkhauser, Basel (1996), 79-323.
MR 1421823 |
Zbl 0864.53025
[23] Heinonen, J., Kilpeläinen, T., Martio, O.:
Nonlinear potential theory of degenerate elliptic equations. Unabridged republication of the 1993 original. Dover Publications Mineola (2006).
MR 2305115 |
Zbl 1115.31001
[26] Lewy, H.:
An example of a smooth linear partial differential equation with solution. Ann. Math. 66 (1957), 155-158.
DOI 10.2307/1970121 |
MR 0088629
[29] Marchi, S.:
Regularity for the solutions of double obstacle problems involving nonlinear elliptic operators on the Heisenberg group. Matematiche 56 (2001), 109-127.
MR 1997729 |
Zbl 1048.35024
[30] Mingione, G.:
The Calderón-Zygmund theory for elliptic problems with measure data. Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 6 (2007), 195-261.
MR 2352517 |
Zbl 1178.35168
[34] Rodrigues, J.-F.:
Obstacle Problems in Mathematical Physics. North-Holland Mathematics Studies 134. North-Holland Amsterdam (1987).
MR 0880369
[35] Stampacchia, G.:
Formes bilineaires coercitives sur les ensembles convexes. C. R. Acad. Sci., Paris 258 (1964), 4413-4416 French.
MR 0166591 |
Zbl 0124.06401
[36] Stein, E. M.:
Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. With the Assistance of Timothy S. Murphy. Princeton Mathematical Series 43. Princeton University Press Princeton (1993).
MR 1232192
[37] Sussmann, H. J.:
Geometry and optimal control. Mathematical Control Theory. With a Foreword by Sanjoy K. Mitter. Dedicated to Roger Ware Brockett on the occasion of his 60th birthday J. B. Baillieul et al. Springer (1998), 140-198.
MR 1661472 |
Zbl 1067.49500