[1] Allen, S., Cahn, J. W.:
A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall 27 (1979), 1084-1095.
DOI 10.1016/0001-6160(79)90196-2
[4] Beneš, M., Chabiniok, R., Kimura, M., Mikula, K.: Nonlinear Gauss-Seidel scheme for Allen-Cahn type systems. In: MAGIA 2007 (Mathematics, Geometry and Their Applications)(M. Vajsáblová and P. Struk, eds.), Publishing House of Slovak Technical University, Bratislava 2008, pp. 29-35.
[5] Bogaert, J., Dymarkowski, S., Taylor, A. M.: Clinical Cardiac MRI. Springer, Berlin - Heidelberg 2005.
[6] (ed), A. Bovik: Handbook of Image and Video Processing. Academic Press, San Diego 1990.
[7] Boykov, Y., Veksler, O., Zabih, R.:
Fast approximate energy minimization via graph cuts. IEEE Trans. Pattern Analysis and Machine Intelligence 23 (2001), 1222-1239.
DOI 10.1109/34.969114
[8] Cerqueira, M. D., Weissman, N. J., al., V. Dilsizian et: Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: A statement of healthcare professionals from the Cardiac Imaging Comittee of the Council on Clinical Cardiology of the American Heart Association. Circulation 105 (2002), 539-542.
[9] Cheng, Y.:
Mean shift, mode deeking, and clustering. IEEE Trans. on Pattern Analysis and Machine Intelligence 17 (1995), 790-799.
DOI 10.1109/34.400568
[11] Geman, S., Geman, D.:
Stochastic relaxation, Gibbs distribution, and the Bayesian restoration of images. IEEE Trans. on Pattern Analysis and Machine Intelligence 6 (1984), 721-741.
DOI 10.1109/TPAMI.1984.4767596
[12] Heiberg, E., Wigstrom, L., Carlsson, M., Bolger, A. F., Karlsson, M.: Time resolved three-dimensional automated segmentation of the left ventricle. In: Proc. IEEE Computers in Cardiology 2005 (32), Lyon 2005, pp. 599-602.
[13] Heiberg, E., Sjögren, J., Ugander, M., Carlsson, M., Engblom, H., Arheden, H.:
Design and validation of SEGMENT - a freely available software for cardiovascular image analysis. BMC Medical Imaging 10 (2010), 1.
DOI 10.1186/1471-2342-10-1
[14] Kass, M., Witkin, A., Terzopoulos, D.:
Snakes: Active contour models. Internat. J. Computer Vision 1 (1988), 321-331.
DOI 10.1007/BF00133570
[15] Máca, R., Beneš, M., Tintěra, J.:
Degenerate diffusion methods in computer image processing and application. J. Math-for-Industry 3 (2011), 33-40.
MR 2888000
[16] Malladi, R., Sethian, J. A., Vemuri, B.:
Shape modeling with front propagation: A level set approach. IEEE Trans. on Pattern Analysis and Machine Intelligence 17 (1995), 2, 158-175.
DOI 10.1109/34.368173
[17] Mikula, K., Sarti., A., Sgallari, F.: Co-volume level set method in subjective surface based medical image segmentation. In: Handbook of Medical Image Analysis: Segmentation and Registration Models (J. Suri et al., eds.), Springer, New York 2005, pp. 583-626.
[18] Mumford, D., Shah, J.: Boundary detection by minimizing functionals. In: Proc. IEEE Conference on Computer Vision and Pattern Recognition 1985, pp. 22-26.
[19] Osher, S., Fedkiw, R.:
Level Set Methods and Dynamic Implicit Surfaces. Springer Verlag, New York 2003.
MR 1939127 |
Zbl 1026.76001
[20] Paragios, N., Chen, Y., Faugeras, O.: Handbook of Mathematical Models of Computer Vision. Springer, New York 2005.
[21] Perona, P., Malik, J.:
Scale space and edge detection using anisotropic diffusion. IEEE Trans. on Pattern Analysis and Machine Intelligence 12 (1990), 629-639.
DOI 10.1109/34.56205
[23] Zhu, S., Yuille, A.:
Region competition: Unifying snakes, region growing, and Bayes/Mdl for multiband image segmentation. IEEE Trans. on Pattern Analysis and Machine Intelligence 18 (1996), 884-900.
DOI 10.1109/34.537343