[1] Abbey, C. K., Barrett, H. H.:
Human- and model-observer performance in ramp-spectrum noise: effects of regularization and object variability. J. Opt. Soc. Amer. A 18 (2001), 473-488.
DOI 10.1364/JOSAA.18.000473
[5] Boellaard, R.:
FDG PET and PET/CT: EANM procedure guidelines for tumour PET imaging: version 1.0. European J. Nucl. Med. Mol. Imaging 37 (2010), 181-200.
DOI 10.1007/s00259-009-1297-4
[6] Boldyš, J.: Monte Carlo simulation of PET images for injection dose optimization. In: Proc. III ECCOMAS Thematic Conference on Computational Vision and Medical Image Processing: VipIMAGE 2011. Taylor and Francis, London 2012.
[7] Brasse, D.: Correction methods for random coincidences in fully 3D whole-nody PET: Impact on data and image quality. J. Nucl. Med. 46 (2005), 859-867.
[8] Cao, J., Worsley, K. J.:
Applications of random fields in human brain mapping. In: Spatial Statistics: Methodological Aspects and Applications. Springer Lecture Notes in Statistics 169 (2001), pp. 169-182.
DOI 10.1007/978-1-4613-0147-9_8 |
Zbl 1022.92021
[9] Danna, M.: Optimization of tracer injection for 3D $^{18}$F-FDG whole body (WB) PET studies using an acquisition-specific NEC (AS-NEC) curve generation. IEEE Nucl. Sci. Conf. R. (2004), 2615-2619.
[10] Everaert, H.:
Optimal dose of $^{18}$F-FDG required for whole-body PET using an LSO PET camera. European J. Nucl. Med. Mol. Imaging 30 (2003), 1615-1619.
DOI 10.1007/s00259-003-1317-8
[11] Gifford, H. C.: Channelized Hotelling and human observer correlation for lesion detection in hepatic SPECT imaging. J. Nucl. Med. 41 (2000), 514-521.
[12] Halpern, B. S.: Optimizing imaging protocols for overweight and obese patients: a lutetium orthosilicate PET/CT study. J. Nucl. Med. 46 (2005), 603-607.
[13] Jacobs, F.:
Optimised tracer-dependent dosage cards to obtain weight-independent effective doses. European J. Nucl. Med. Mol. Imaging 32 (2005), 581-588.
DOI 10.1007/s00259-004-1708-5
[15] Mizuta, T.:
NEC density and liver ROI S/N ratio for image quality control of whole-body FDG-PET scans: comparison with visual assessment. Mol. Imaging Biol. 11 (2009), 480-486.
DOI 10.1007/s11307-009-0214-3
[16] Powsner, R. A., Powsner, E. R.: Essential Nuclear Medicine Physics. Second edition. Wiley-Blackwell, 2006.
[18] Strother, S. C., Casey, M. E., Hoffman, E. J.:
Measuring PET scanner sensitivity: relating countrates to image signal-to-noise ratios using noise equivalents counts. IEEE Trans. Nucl. Sci. 37 (1990), 783-788.
DOI 10.1109/23.106715
[21] Watson, C. C.:
Count rate dependence of local signal-to-noise ratio in positron emission tomography. IEEE Trans. Nucl. Sci. 51 (2004), 2670-2680.
DOI 10.1109/TNS.2004.835743
[22] al., C. C. Watson et: Optimizing injected dose in clinical PET by accurately modeling the counting-rate response functions specific to individual patient scans. J. Nucl. Med. 46 (2005), 1825-1834.
[23] Watson, C. C., Newport, D., Casey, M. E.:
Evaluation of simulation-based scatter correction for 3D PET cardiac imaging. IEEE Trans. Nucl. Sci. 44 (1997), 90-97.
DOI 10.1109/23.554831
[24] Worsley, K. J.:
A three-dimensional statistical analysis for CBF activation studies in human brain. J. Cereb. Blood Flow Metab. 12 (1992), 900-918.
DOI 10.1038/jcbfm.1992.127
[25] Worsley, K. J.:
Boundary corrections for the expected Euler characteristic of excursion sets of random fields, with an application to astrophysics. Adv. in Appl. Probab. 27 (1995), 943-959.
DOI 10.2307/1427930 |
MR 1358902 |
Zbl 0836.60043
[26] Worsley, K. J.:
Estimating the number of peaks in a random field using the Hadwiger characteristic of excursion sets, with applications to medical images. Ann. Statist. 23 (1995), 640-669.
DOI 10.1214/aos/1176324540 |
MR 1332586 |
Zbl 0898.62120