Previous |  Up |  Next

Article

Keywords:
almost completely decomposable group; indecomposable; representation
Summary:
Almost completely decomposable groups with a critical typeset of type $(1,3)$ and a $p$-primary regulator quotient are studied. It is shown that there are, depending on the exponent of the regulator quotient $p^k$, either no indecomposables if $k\leq 2$; only six near isomorphism types of indecomposables if $k=3$; and indecomposables of arbitrary large rank if $k\geq 4$.
References:
[1] Arnold, D. M.: Finite Rank Torsion-Free Abelian Groups and Rings. Lecture Notes 931. Springer Berlin (1982). MR 0665251
[2] Arnold, D. M.: Abelian Groups and Representations of Partially Ordered Finite Sets. CMS Advanced Books in Mathematics. Springer New York (2000). MR 1764257
[3] Arnold, D. M., Dugas, M.: Finite rank Butler groups with small typesets. Abelian Groups and Modules (Dublin 1998). Trends in Math. P. Eklof et al. Birkhäuser Basel (1998), 107-119. MR 1735562
[4] Arnold, D. M., Simson, D.: Representations of finite partially ordered sets over commutative artinian uniserial rings. J. Pure Appl. Algebra 205 (2006), 640-659. DOI 10.1016/j.jpaa.2005.07.017 | MR 2210222 | Zbl 1106.16016
[5] Arnold, D. M., Simson, D.: Representations of finite posets over discrete valuation rings. Commun. Algebra 35 (2007), 3128-3144. DOI 10.1080/00927870701405173 | MR 2356147 | Zbl 1142.16003
[6] Arnold, D. M., Mader, A., Mutzbauer, O., Solak, E.: Almost completely decomposable groups and unbounded representation type. J. Algebra 349 (2012), 50-62. DOI 10.1016/j.jalgebra.2011.10.019 | MR 2853625 | Zbl 1253.20057
[7] Bondarenko, V. M.: Representations of bundles of semichained sets and their applications. St. Petersburg Math. J. 3 (1992), 973-996. MR 1186235
[8] Burkhardt, R.: On a special class of almost completely decomposable groups I. Abelian Groups and Modules. Proc. Udine Con. 1984, CISM Courses and Lecture 287 R. Göbel at al. Springer Vienna (1984), 141-150. MR 0789813
[9] Corner, A. L. S.: A note on rank and direct decompositions of torsion-free Abelian groups. Proc. Camb. Philos. Soc. 57 (1961), 230-233. DOI 10.1017/S0305004100035106 | MR 0241530 | Zbl 0100.02903
[10] Drozd, J. A.: Matrix problems and categories of matrices. J. Sov. Math. 3 (1975), 692-699. DOI 10.1007/BF01084669
[11] Dugas, M.: $BR$-groups with type set $(1,2)$. Forum Math. 13 (2001), 143-148. DOI 10.1515/form.2001.003 | MR 1808437
[12] Faticoni, T., Schultz, P.: Direct decompositions of acd groups with primary regulating index. Abelian Groups and Modules. Proc. 1995 Colorado Springs Conference D. Arnold et al. Marcel Dekker New York (1996), 233-241. MR 1415636 | Zbl 0869.20038
[13] Fuchs, L.: Infinite Abelian Groups, Vol. II. Pure and Applied Mathematics 36 Academic Press, New York (1973). MR 0349869 | Zbl 0257.20035
[14] Jacobson, N.: Basic Algebra I. W. H. Freeman and Company San Francisco (1974). MR 0356989 | Zbl 0284.16001
[15] Lady, E. L.: Almost completely decomposable torsion-free Abelian groups. Proc. Am. Math. Soc. 45 (1974), 41-47. DOI 10.1090/S0002-9939-1974-0349873-6 | MR 0349873 | Zbl 0292.20051
[16] Lady, E. L.: Nearly isomorphic torsion-free abelian groups. J. Algebra 35 (1975), 235-238. DOI 10.1016/0021-8693(75)90048-4 | MR 0369568 | Zbl 0322.20025
[17] Mader, A.: Almost Completely Decomposable Groups. Gordon and Breach Amsterdam (2000). MR 1751515 | Zbl 0952.20043
[18] Mader, A., Strüngmann, L.: Generalized almost completely decomposable groups. Rend. Semin. Mat. Univ. Padova 113 (2005), 47-69. MR 2168980 | Zbl 1149.20045
[19] Mutzbauer, O.: Regulating subgroups of Butler groups. Abelian Groups. Proc. 1991 Curaçao Conf. Lecture Notes Pure Appl. Math. 146 L. Fuchs Marcel Dekker New York (1993), 209-216. MR 1217272 | Zbl 0801.20029
[20] Mutzbauer, O., Solak, E.: $(1,2)$-groups with $p^3$-regulator quotient. J. Algebra 320 (2008), 3821-3831. DOI 10.1016/j.jalgebra.2008.09.002 | MR 2457724
[21] Nazarova, L. A., Roiter, A. V.: Finitely generated modules over a dyad of local Dedekind rings, and finite groups with an Abelian normal divisor of index $p$. Math. USSR Izv. 3 (1969), 65-89 Russian. DOI 10.1070/IM1969v003n01ABEH000748
[22] Nazarova, L. A., Roiter, A. V., Sergeichuk, V. V., Bondarenko, V. M.: Applications of modules over a dyad for the classification of finite $p$-groups possessing an Abelian subgroup of index $p$, and of pairs of mutually annihilating operators. J. Sov. Math. 3 (1975), 636-653 translation from Zap. Nauchn. Semin. Leningr. Otd. Mat. Inst. Steklova 28 (1972),69-92 English. Russian original. DOI 10.1007/BF01084666 | MR 0332963
[23] Sergeichuk, V. V.: Canonical matrices for linear matrix problems. Linear Algebra Appl. 317 (2000), 53-102. DOI 10.1016/S0024-3795(00)00150-6 | MR 1782204 | Zbl 0967.15007
[24] Shapiro, H.: A survey of canonical forms and invariants for unitary similarity. Linear Algebra Appl. 147 (1991), 101-167. MR 1088662 | Zbl 0723.15007
[25] Simson, D.: Linear Representations of Partially Ordered Sets and Vector Space Categories. Algebra, Logic and Applications Appl., Vol. 4. Gordon and Breach Brooklyn (2000). MR 1241646
[26] Solak, E.: Almost completely decomposable groups of type $(1,2)$. Dissertation Würzburg. (2007).
Partner of
EuDML logo