Previous |  Up |  Next

Article

MSC: 54C20, 54C30, 54H05
Keywords:
$\alpha $-embedded set; $\alpha $-separated set; extension
Summary:
We introduce and study $\alpha$-embedded sets and apply them to generalize the Kuratowski Extension Theorem.
References:
[1] Blair R.: Filter characterization of $z$-, $C^*$-, and $C$-embeddings. Fund. Math. 90 (1976), 285–300. MR 0415564
[2] Blair R., Hager A.: Extensions of zero-sets and of real-valued functions. Math. Z. 136 (1974), 41–52. DOI 10.1007/BF01189255 | MR 0385793 | Zbl 0264.54011
[3] Corson H.: Normality in subsets of product spaces. Amer. J. Math. 81 (1959), 785–796. DOI 10.2307/2372929 | MR 0107222 | Zbl 0095.37302
[4] HASH(0x9f826e8): Encyclopedia of General Topology. edited by K.P. Hart, Jun-iti Nagata and J.E. Vaughan, Elsevier, 2004. MR 2049453
[5] Engelking R.: General Topology. Revised and completed edition. Heldermann Verlag, Berlin, 1989. MR 1039321
[6] Gillman L., Jerison M.: Rings of Continuous Functions. Van Nostrand, Princeton, 1960. MR 0116199 | Zbl 0327.46040
[7] Kalenda O., Spurný J.: Extending Baire-one functions on topological spaces. Topology Appl. 149 (2005), 195–216. DOI 10.1016/j.topol.2004.09.007 | MR 2130864 | Zbl 1075.54011
[8] Karlova O.: Baire classification of mappings which are continuous with respect to the first variable and of the $\alpha$'th functionally class with respect to the second variable. Mathematical Bulletin NTSH 2 (2005), 98–114 (in Ukrainian).
[9] Karlova O.: Classification of separately continuous functions with values in $\sigma$-metrizable spaces. Appl. Gen. Topol. 13 (2012), no. 2, 167–178. MR 2998364
[10] Kombarov A., Malykhin V.: On $\Sigma$-products. Dokl. Akad. Nauk SSSR 213 (1973), 774–776 (in Russian). MR 0339073
[11] Kuratowski K.: Topology, Vol. 1. Moscow, Mir, 1966 (in Russian). MR 0259836
[12] Lukeš J., Malý J., Zajíček L.: Fine Topology Methods in Real Analysis and Potential Theory. Springer, Berlin, 1986. MR 0861411 | Zbl 0607.31001
[13] Ohta H.: Extension properties and the Niemytski plane. Appl. Gen. Topol. 1 (2000), no. 1, 45–60. MR 1796931
Partner of
EuDML logo