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On a-embedded sets and extension of mappings

OLENA KARLOVA

Abstract. We introduce and study a-embedded sets and apply them to generalize
the Kuratowski Extension Theorem.
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Classification: 54C20, 54C30, 54H05

1. Introduction

A subset A of a topological space X is called functionally open (function-
ally closed) if there exists a continuous function f : X — [0,1] such that A =
FH(0, 1)) (A = £71(0)).

Let G§(X) and F§(X) be the collections of all functionally open and function-
ally closed subsets of a topological space X, respectively. Assume that the classes
gg (X) and FE (X) are defined for all £ < a, where 0 < o < wy. Then, if a is odd,
the class G (X)) (F£(X)) consists of all countable intersections (unions) of sets of
lower classes, and, if « is even, the class G%(X) (FZ(X)) consists of all countable
unions (intersections) of sets of lower classes. The classes F(X) for odd « and
G*(X) for even « are said to be functionally additive, and the classes F(X) for
even o and G (X)) for odd « are called functionally multiplicative. If a set belongs
to the a-th functionally additive and to the a-th functionally multiplicative class
simultaneously, then it is called functionally ambiguous of the a-th class. For
every 0 < a < wi let

B, (X) = Fo(X) UG, (X)
and let
B (X)= |J B.X).
0<a<ws
If A e B*(X), then A is said to be a functionally measurable set.

If P is a property of mappings, then by P(X,Y") we denote the collection of all
mappings f : X — Y with the property P. Let P(X) (P*(X)) be the collection
of all real-valued (bounded) mappings on X with a property P.

By the letter C' we denote, as usual, the property of continuity.

Let Ko(X,Y) = C(X,Y). For an ordinal 0 < o < w; we say that a mapping
f: X =Y belongs to the a-th functional Lebesque class, f € Ko(X,Y), if the
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preimage f~1(V) of an arbitrary open set V C Y is of the a-th functionally
additive class in X.

A subspace E of X is P-embedded (P*-embedded) in X if every (bounded)
function f € P(F) can be extended to a (bounded) function g € P(X).

A subset E of X is said to be z-embedded in X if every functionally closed set
in F is the restriction of a functionally closed set in X to E. It is well-known that

E is C-embedded = E is C*-embedded = F is z-embedded.

Recall that sets A and B are completely separated in X if there exists a con-
tinuous function f: X — [0,1] such that A C f=1(0) and B C f~1(1).
The following theorem was proved in [2, Corollary 3.6].

Theorem 1.1 (Blair-Hager). A subset E of a topological space X is C-embedded
in X if and only if E is z-embedded in X and E is completely separated from
every functionally closed set in X disjoint from FE.

It is natural to consider P- and P*-embedded sets if P = K, for « > 0. In
connection with this we introduce and study a class of a-embedded sets which
coincides with the class of z-embedded sets when o = 0. In Section 3 we generalize
the notion of completely separated sets to a-separated sets. Section 4 deals with
ambiguously a-embedded sets which play the important role in the extension of
bounded K,-functions. In the fifth section we prove an analog of the Tietze-
Uryhson Extension Theorem for K,-functions. Section 6 concerns the question
when Kj-embedded sets coincide with K7-embedded sets. The seventh section
presents a generalization of the Kuratowski Theorem [11, p.445] on extension of
K,-mappings with values in Polish spaces.

2. «a-embedded sets

Let 0 < a < wy. A subset E of a topological space X is a-embedded in X if
for any set A of the a-th functionally additive (multiplicative) class in E there
is a set B of the a-th functionally additive (multiplicative) class in X such that
A=BNE.

Proposition 2.1. Let X be a topological space, 0 < a < w; and let E C X be
an a-embedded set of the a-th functionally additive (multiplicative) class in X.
Then every set of the a-th functionally additive (multiplicative) class in E belongs
to the a-th functionally additive (multiplicative) class in X.

PrROOF: For a set C of the a-th functionally additive (multiplicative) class in E
we choose a set B of the a-th functionally additive (multiplicative) class in X such
that C' = BNE. Then C belongs to the a-th functionally additive (multiplicative)
class in X as the intersection of two sets of the same class. O

Proposition 2.2. Let X be a topological space, E C X and

(i) X is perfectly normal, or
(ii) X is completely regular and E is its Lindelof subset, or
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(iii) FE is a functionally open subset of X, or
(iv) X is a normal space and E is its F,,-subset,

then FE is 0-embedded in X.

PRrROOF: Let G be a functionally open set in E.

(i) Choose an open set U in X such that G = ENU. Then U is functionally
open in X by Vedenissoff’s theorem [5, p.45].

(ii) Let U be an open set in X such that G = ENU. Since X is completely
regular, U = J g Us, where Uy is a functionally open set in X for each s € S.
Notice that G is Lindelof, provided G is F,, in the Lindeldf space E [5, p.192].
Then there exists a countable set Sy C S such that G C USGSO Us. Let V =
Useso Us. Then V is functionally open in X and VN E = G.

(iii) Consider continuous functions ¢ : E — [0,1] and ¢ : X — [0, 1] such that
G = ¢ 1((0,1]) and E = ~1((0,1]). For each x € X we set

Fa) = {w(ﬂﬁ) (), zeE,
0, reX\E.
Since ¢(x) -¢(z) = 0on E\ E, f : X — [0,1] is continuous. Moreover, G =
F71((0,1]). Hence, the set G is functionally open in X.

(iv) Let G be an open set in X such that G = G N E. Since G is functionally
open in F, G is F, in E. Consequently, G is F, in X, provided F is F, in X.
Therefore, there exists a sequence (F,,)22; of closed sets F,, C X such that
G = UZO:1 F,,. Since X is normal, for every n € N there exists a continuous
function f, : X — [0,1] such that f,(z) = 1ifz € F, and f,(z) =0ifz € X\ G,
Then the set V = J.2, £, *((0,1]) is functionally open in X and VNE =G. O

Examples 2.3 and 2.4 show that none of the conditions (i)—(iv) on X and F in
Proposition 2.2 can be weakened.

Recall that a topological space X is said to be perfect if every its closed subset
is G5 in X.

Example 2.3. There exist a perfect completely regular space X and its func-
tionally closed subspace E which is not a-embedded in X for every 0 < a < ws.

Consequently, there is a bounded continuous function on E which cannot be
extended to a KC,-function for every a.

PROOF: Let X be the Niemytski plane [5, p.22], i.e., X = R X [0,400) where
a base of neighborhoods of (z,y) € X with y > 0 is formed by open balls with
the center in (z,y), and a base of neighborhoods of (x,0) is formed by the sets
U U {(z,0)} such that U is an open ball which tangent to R x {0} in the point
(z,0). It is well-known that the space X is perfect and completely regular, but it
is not normal.

Denote E = R x {0}. Since the function f : X — R, f(z,y) =y, is continuous
and E = f~1(0), the set E is functionally closed in X.
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Notice that every function f : E — R is continuous. Therefore, |B%(E)| = 22
for every 0 < o < wy. On the other hand, |B}(X)| = 2*° for every 0 < a < wy,
provided the space X is separable. Hence, for every 0 < a < w; there exists a set
A € B} (E) which cannot be extended to a set B € B%(X).
Observe that a function f : E — [0,1] such that f =1 on A and f = 0 on
E\ A is continuous on E. But there is no K,-function f : X — [0, 1] such that
gle = f, since otherwise the set B = g~!(1) would be an extension of A. O

Example 2.4. There exist a compact Hausdorff space X and its open subspace
FE which is not a-embedded in X for every 0 < a < wy.

PRrROOF: Let X = DU{oo} be the Alexandroff compactification of an uncountable
discrete space D [5, p.169] i E = D. Fix 0 < a < wy and choose an arbitrary
uncountable set A C F with uncountable complement X \ A. Evidently, A is
functionally closed in E. Assume that there is a set B of the a-th functionally
multiplicative class in X such that A = BN E. Clearly, B = AU{co}. Moreover,
there exists a function f : X — R of the a-th Baire class such that B = f~1(0)
[9, Lemma 2.1]. But every continuous function on X, and consequently every
Baire function of the class o on X satisfies the equality f(z) = f(oo) for all but
countably many points x € X, which implies a contradiction. O

Proposition 2.5. Let 0 < a < 8 < wy and let X be a topological space. Then
every a-embedded subset of X is f-embedded.

PROOF: Let E be an a-embedded subset of X. If 8 = «, the assertion of the
proposition if obvious. Suppose the assertion is true for all « < § < £ and let A
be a set of the £-th functionally additive class in E. Then there exists a sequence
of sets A, of functionally multiplicative classes < £ in E such that A =], A4,.
According to the assumption, for every n € N there is a set B,, of a functionally
multiplicative class < £ in X such that A, = B, NE. Then the set B = Uff:l B,
belongs to the £-th functionally additive class in X and A = BN E.

The opposite proposition is not true, as the following result shows.

Theorem 2.6. There exist a completely regular space X and its 1-embedded
subspace E C X which is not 0-embedded in X .

ProOF: Let Xo = [0,1], X; = N for every s € (0,1], Y = [[,¢(9,1) Xs and
X=[01xy= ][] X.
s€[0,1]
Then X is completely regular as a product of completely regular spaces X;. Let
A1 = (0, 1] and A2 = {0}

For ¢ = 1,2 we consider the set

F; = ﬂ{y = (Ys)se01] €Y : [{s € (0,1] : ys = n}| < 1}
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Obviously, F; N Fy = () and the sets I} and F, are closed in Y.
Let

31:141><F‘17 BQZAQXFQ and E:BlUBQ.

It is easy to see that the sets B; and By are closed in F, and consequently they
are functionally clopen in E.

Claim 1. The set B; is 0-embedded in X for every i =1,2.
PRrOOF: Let C be a functionally open set in B;. Let us consider the set

H = {2 = (2)sepom € X : [{s € [0,1] s 2 # 1}] < Ry},

Then the set [0,1] x F; is closed in H for every i = 1,2. Since H is the ¥-product
of the family (X)sep0,1] (see [5, p. 118]), according to [10] the space H is normal.
Consequently, [0,1] x F; is normal as closed subspace of normal space for every
i = 1,2. Clearly, Bj is functionally open in [0, 1] x F;. Hence, B is 0-embedded
in [0,1] x F} according to Proposition 2.2(iii). Then C is functionally open in
[0,1] x F; by Proposition 2.1. Notice that the set [0, 1] x F} is 0-embedded in H
by Propositions 2.2(iv). Hence, there exists a functionally open set C’ in H such
that C’' N ([0,1] x Fy) = C. Tt follows from [3] that H is 0-embedded in X. Then
there exists a functionally open set C” in X such that C” N H = C’. Evidently,
C" N By = C. Therefore, the set By in 0-embedded in X.

Analogously, it can be shown that the set By is 0-embedded in X, using the
fact that Bs is 0-embedded in [0, 1] x Fy according to Proposition 2.2(iv).

Claim 2. The set E is not 0-embedded in X.

PROOF: Assuming the contrary, we choose a functionally closed set D in X such
that DN E = By. Then D = f~1(0) for some continuous function f : X — [0, 1].
It follows from [5, p.117] that there exists a countable set S = {0} UT, where
T C (0,1], such that for any = = (2,)se[0,1] and y = (¥s)sejo,1] of X the equality
x|s = yls implies f(x) = f(y). Let yo € Y be such that yo|r is a sequence of
different natural numbers which are not equal to 1 or 2. We choose y; € F; and
Yo € Iy such that yo|7 = y1|7 = yo|r. Then

f(a’ayO) = f(aayl) = f(aayQ)

for all a € [0,1]. We notice that f(0,y1) = 0. Therefore, f(0,y0) = 0. But
fla,y2) > 0 for all @ € As. Then f(a,yo) > 0 for all « € Ay. Hence, A; =
(f¥0)=1(0), where f¥(a) = f(a,yo) for all a € [0,1], and f¥ is continuous. Thus,
the set Ay = (0, 1] is closed in [0, 1], which implies a contradiction.

Claim 3. The set E is 1-embedded in X.

PRrOOF: Let C be a functionally Gs-set in E. We put

E1:A1XY, EQZAQXY
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Then the set F; is functionally open in X and the set Fs is functionally closed
in X. Fori=1,2let C; = CNB;. Since for every ¢ = 1, 2 the set C; is functionally
G5 in the set B; 0-embedded in X, by Proposition 2.5 there exists a functionally
Gs-set C~’Z in X such that C’Z N B; = C;. Let

é = (él N El) @] (62 n EQ).
Then C is functionally G5 in X and CNE = C. O

3. «a-separated sets and a-separated spaces

Let 0 < a < wi. Subsets A and B of a topological space X are said to be
a-separated if there exists a function f € K, (X) such that

ACf7H0) and BC f(1).
Let us remark that O-separated sets are also called completely separated [5, p. 42].

Lemma 3.1 ([8, Lemma 2.1]). Let X be a topological space, a > 0 and let
A C X be a subset of the a-th functionally additive class. Then there exists
a sequence (A,)S2, such that each A, is functionally ambiguous of the class «
inX, A, NAy,=0forn#mand A=]J,_, Ay.

PROOF: Since A belongs to the a-th functionally additive class, A = (J -, By,
where each B,, belongs to the functionally multiplicative class < « in X. There-
fore, each B, is functionally ambiguous of the class a. Let A7 = B; and
Ap = Bn \Ujcp, Bx for n > 1. Then (A,);, is the required sequence. O

Lemma 3.2 ([8, Lemma 2.2]). Let X be a topological space, a > 0 and let
A, belongs to the a-th functionally additive class in X for every n € N with
X =U,~_, A,. Then there exists a sequence (B,) of mutually disjoint func-

tionally ambiguous sets of the class o in X such that B, C A,, and X = UZOZI B,,.

Proor: If follows from Lemma 3.1 that for every n € N there exists a sequence
(Fnm)oo_; such that each F, ., is functionally ambiguous of the class « in X,
Fom NE,,=0form+#kand A, =J°_, Fy,m- Let k: N? = N be a bijection.
Set

Cn,nb = Fn,nb \ U Fp,s-

k(p,s)<k(n,m)
Evidently, Uf:mzl Cpom =X. Let B, =, _; Com. Then U~ B, = U~ An
=X and B,, C U§:1 Fy.m = A,. Notice that each C), ,, is functionally ambigu-
ous of the class a. Therefore, B,, belongs to the functionally additive class « for
every n. Moreover, B,, N B,,, = () for n # m. Since X \ B, = U,#n By, By, is
functionally ambiguous of the class a. (I

Lemma 3.3. Let 0 < a < wy and let A be a subset of the a-th functionally mul-
tiplicative class of a topological space X. Then there exists a function f € KX(X)
such that A = f~1(0).
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PRrROOF: For a = 0 the lemma follows from the definition of a functionally closed
set. Let a > 0. Since the set B = X \ A is of the a-th functionally additive class,
there exists a sequence of functionally ambiguous sets B,, of the a-th class in X
such that B = UZOZI B,, and B, N B,, = 0 for all n # m by Lemma 3.1. Define a

function f: X — [0,1] by
0, if z€ A,
-

%, if x € B,.

Take an arbitrary open set V' C [0,1]. If 0 € V then f~(V) is of the a-th
functionally additive class as a union of at most countably many sets B,. If
0 € V then there exists such a number N that % € V for all n > N. Then
the set X \ f~4(V) = Ufj:l B,, belongs to the a-th functionally multiplicative

class. Hence, f~1(V) is of the a-th functionally additive class in X. Therefore,
feK:(X). O

Proposition 3.4. Let 0 < a < w; and let X be a topological space. Then any
two disjoint sets A and B of the a-th functionally multiplicative class in X are
a-separated.

PROOF: By Lemma 3.3 we choose functions f;, f» € Ko (X) such that A = f;(0)
and B = f;*(0). For all x € X let

__ h)
AR ATES ATk
It is easy to see that f € Ko(X), f(z) =0on A and f(z) =1 on B. O

Let 0 < a < w;. A topological space X is a-separated if any two disjoint
sets A, B C X of the a-th multiplicative class in X are a-separated. It follows
from Urysohn’s Lemma [5, p.41] that a topological space is 0-separated if and
only if it is normal. Proposition 3.4 implies that every perfectly normal space is
a-separated for each o > 0. It is natural to ask whether there is an a-separated
space for a > 1 which is not perfectly normal.

Example 3.5. There exists a completely regular 1-separated space which is not
perfectly normal.

PROOF: Let D = D(m) be a discrete space of the cardinality m, where m is a
measurable cardinal number [6, 12.1]. According to [6, 12.2], D is not a realcom-
pact space. Let X = vD be a Hewitt realcompactification of D [5, p.218]. Then
X is an extremally disconnected P-space, which is not discrete [6, 12H]. Thus,
there exists a point € X such that the set {z} is not open. Then {z}, being
a closed set, is not a Gs-set, since X is a P-space (i.e. a space in which every
Gs-subset is open). Therefore, the space X is not perfect.

If A and B are disjoint Gs-subsets of X, then A and B are open in X. Notice
that in an extremally disconnected space any two disjoint open sets are completely
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separated [6, 1H]. Consequently, A and B are 1-separated, since every continuous
function belongs to the first Lebesgue class. ([

Clearly, every ambiguous set A of the class 0 in a topological space (i.e., every
clopen set) is a functionally ambiguous set of the class 0. If A is an ambiguous set
of the first class, i.e. A is an F,- and a Gs-set, then A need not be a functionally
F,- or a functionally Gs-set. Indeed, let X be the Niemytski plane, E be a set
which is not of the Gs,-type in R and let A = E x {0} be a subspace of X.
Then A is closed and consequently Gs-subset of X, since the Niemytski plane is a
perfect space. Assume that A is a functionally F,-set in X. Then A = (J,2 | A,,
where A,, is a functionally closed subset of X for every n € N. According to [13,
Theorem 5.1], a closed subset F' of X is a functionally closed set in X if and only
if the set {x € R: (z,0) € F'} is a Gs-set in R. It follows that for every n € N the
set A, is a Gs-subset of R, which implies a contradiction.

Theorem 3.6. Let 0 < o < wy and let X be an a-separated space.

(1) Every ambiguous set A C X of the class « is functionally ambiguous of
the class a.

(2) For any disjoint sets A and B of the (« + 1)-th additive class in X there
exists a set C' of the (o + 1)-th functionally multiplicative class such that

ACCCX\B.

(3) Every ambiguous set A of the (a + 1)-th class in X is a functionally
ambiguous set of the (« + 1)-th class.
(4) Any set of the a-th multiplicative class in X is a-embedded.

PrOOF: (1) Since the set B = X \ A belongs to the a-th multiplicative class
in X, there exists a function f € K,(X) such that A C f=1(0) and B C f~1(1).
Then A = f71(0) and B = f~!(1). Hence, the sets A and B are of the a-th
functionally multiplicative class. Consequently, A is a functionally ambiguous set
of the class .

(2) Choose two sequences (A4,)22; and (B,)32,, where A4,, and B, belong to
the a-th multiplicative class in X for every n € N, such that A = (J,—, A, and
B = UZOZI B,,. Since X is a-separated, for every n,m € N there exists a function

frm € Ka(X) such that A, C f,71.(1) and By, C f,, 1,(0). Set

C=( U fuoml(01).

n=1m=1

Then the set C is of the (« + 1)-th functionally multiplicative class in X and
ACCCX\B.

(3) Let A C X be an ambiguous set of the (a+ 1)-th class. Denote B = X \ A.
Since A and B are disjoint sets of the (a + 1)-th additive class in X, according
to (3.6) there exists a set C' C X of the (a + 1)-th functionally multiplicative
class such that A C C C X \ B. It follows that A = C, consequently A is of the
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(o + 1)-th functionally multiplicative class. Analogously, it can be shown that
B is also of the (a + 1)-th functionally multiplicative class. Therefore, A is a
functionally ambiguous set of the (« + 1)-th class.

(4) If @« = 0 then X is a normal space. Therefore, any closed set F' in X is
0-embedded by Proposition 2.2. Let a > 0 and let £ C X be a set of the a-th
multiplicative class in X. Choose any set A of the a-th functionally multiplicative
class in E. Since the set F'\ A belongs to the a-th functionally additive class in E,
there exists a sequence of sets B,, of the a-th functionally multiplicative class in E
such that E\ A = J,_; B,,. Then for every n € N the sets A and B, are disjoint
and belong to the a-th multiplicative class in X. Since X is a-separated, we can
choose a function f, € K,(X) such that A C f,(0) and B, C f,(1). Let
A=, £71(0). Then the set A belongs to the a-th functionally multiplicative
class in X and AN E = A. 0

Proposition 3.7. A topological space X is normal if and only if every its closed
subset is 0-embedded.

PrOOF: We only need to prove the sufficiency. Let A and B be disjoint closed
subsets of X. Then A is a functionally closed subset of F = AU B. Since F is
closed in X, E is a 0-embedded set. Therefore, there is a functionally closed set
Ain X such that A = ENA. Then B is a functionally closed subset of the closed
set D = AUB. Since D is 0-embedded in X, there exists a functionally closed set
B in X such that B = DN B. Tt is easy to check that ANB = 0. If f : X — [0,1]
be a continuous function such that A = f~1(0) and B = f~1(1), then the sets
U= f"%0,1/2)) and V = f~1((1/2,1]) are disjoint and open in X, A C U and
B C V. Hence, X is a normal space. ([l

An analog of the previous proposition is valid for hereditarily a-separated
spaces. We say that a topological space X is hereditarily a-separated if every
its subspace is a-separated.

Proposition 3.8. Let 0 < a < wi and let X be a hereditarily a-separated space.
If every subset of the (« + 1)-th multiplicative class in X is (o + 1)-embedded,
then X is (« + 1)-separated.

ProOF: Let A, B C X be disjoint sets of the (a+ 1)-th multiplicative class. Then
A is ambiguous of the class (a+1) in E = AUB. Since E belongs to the (a+1)-th
multiplicative class in X, F is (a + 1)-embedded. Moreover, E is a-separated as
a subspace of the hereditarily a-separated space X. According to Theorem 3.6(3)
A is functionally ambiguous of the («+ 1)-th class in E. Therefore, there is a set
A of the (a + 1)-th functionally multiplicative class in X such that A = F N A,
Then B is a functionally ambiguous subset of the class (a4 1) in D = AU B,
Since D belongs to the (a+1)-th multiplicative class in X, D is (a+1)-embedded.
Therefore, there exists a set B of the (a+1)-th functionally multiplicative class in
X such that B = DNB. Tt is easy to check that ANB = . Hence, the sets A and

385
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B are (a4 1)-separated by Proposition 3.4. Then A and B are (a 4 1)-separated
too. g

Remark that the Alexandroff compactification of the real line R endowed with
the discrete topology is a hereditarily normal space which is not 1-separated.

We give some examples below of a-separated subsets of a completely regular
space.

Proposition 3.9. Let X be a completely regular space and A, B C X are disjoint
sets. Then

(a) if A and B are Lindelof G-sets, then they are 1-separated;

(b) if A is a Lindelof hereditarily Baire space and B is a functionally Gs-set,
then A and B are 1-separated;

(c) if A is Lindelof and B is an F,-set, then A and B are 2-separated.

PROOF: (a) Let A = (2, Uy, where U, is an open set in X for every n € N.
Since X is completely regular, U, = [, s, Usn for every n € N such that all the
sets Uy p, are functionally open in X. Then for every n € N there is a countable set
Sn.o C Sp such that A C Usesn0 Us.n, since A is Lindelof. Let V,, = UseSnU Us o,
n € N. Obviously, every V,, is a functionally open set and A = (),~; V,,. Hence,
A is a functionally Gs-subset of X. Analogously, B is also a functionally Gs-set.
Therefore, the sets A and B are 1-separated by Proposition 3.4.

(b) According to [7, Proposition 12] there is a functionally Gg-set C' in X such
that A C C C X \ B. Taking a function f € K;(X) such that C = f~1(0) and
B = f71(1), we obtain that A and B are 1-separated.

(c) Let X \ B =2, Uy, where (U,)52, is a sequence of open subsets of X.
Then U,, = USE s, Usn for every n € N such that all the sets U, ,, are functionally

open in X. Since A is Lindelof, A C V,, = Usesno Us n, where the set Sy, is
countable for every n € N. Denote C = (),—, V,,. Then C is a functionally Gs-set
in X and A CC C X\ B. Since C is a functionally ambiguous set of the second
class, A and B are 2-separated. [l

The following example shows that the class of separation of sets A and B in
Proposition 3.9(c) cannot be made lower.

Example 3.10. There exist a metrizable space X and its disjoint Lindelof Fi,-
subsets A and B, which are not 1-separated.

PrROOF: Let X = R, A = Q and B is a countable dense subsets of irrational
numbers. Assume that A and B are 1-separated, i.e. there exist disjoint Gs-sets
C and D in R such that A C C and B C D. Then C = D = R, which implies a
contradictions, since X is a Baire space. [l
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4. Ambiguously a-embedded sets

Let 0 < a < w;i. A subset E of a topological space X is ambiguously a-
embedded in X if for any functionally ambiguous set A of the class « in E there
exists a functionally ambiguous set B of the class o in X such that A= BN FE.

Proposition 4.1. Let 0 < a < w; and let X be a topological space. Then every
ambiguously a-embedded set E in X is a-embedded in X.

PROOF: Take a set A C FE of the a-th functionally additive class in E. Then
A can be written as A = |J;_, Ay, where A, is a functionally ambiguous set of
the class a in F for every n € N by Lemma 3.1. Then there exists a sequence of
functionally ambiguous sets B,, of the class « in X such that A, = B, N E for
every n € N. Let B =J,_, By,. Then the set B belongs to the a-th functionally
additive class in X and BN E = A. O

We will need the following auxiliary fact.

Lemma 4.2 (Lemma 2.3 [8]). Let 0 < a < wy and let X be a topological space.
Then for any disjoint sets A, B C X of the a-th functionally multiplicative class
in X there exists a functionally ambiguous set C of the class o in X such that
ACCCX\B.

PROOF: Lemma 3.2 implies that there are disjoint functionally ambiguous sets
E; and FEs of the class a such that F1 C X \ A, E; C X \ B and X = E; U Es.
It remains to put C' = FEs. O

Proposition 4.3. Let 0 < a < w; and let X be a topological space. Then every
a-embedded set E of the a-th functionally multiplicative class in X is ambiguously
a-embedded in X.

PRrOOF: Consider a functionally ambiguous set A of the class a in F. Then
there exists a set B of the a-th functionally multiplicative class in X such that
A = BN E. Since E is of the a-th functionally multiplicative class in X, the
set A is also of the same class in X. Analogously, the set E \ A belongs to the
a-th functionally multiplicative class in X. It follows from Lemma 4.2 that there
exists a functionally ambiguous set C' of the class a in X such that A C C and
CN(E\A) = 0. Clearly, CNE = A. Hence, the set F is ambiguously a-embedded
in X. ([l

Example 4.4. There exists a 0-embedded Fi,-set £ C R which is not ambiguously
1-embedded.

PrOOF: Let E = Q. Obviously, E is a 0-embedded set. Consider any two disjoint
A and B which are dense in E. Then A and B are simultaneously F,- and Gs-sets
in E. Assume that there exists an F,- and Gs-set C' in R such that A = ENC.
Since A C C and B C R\ C, the sets C and R\ C are dense in R. Moreover,
the sets C and R\ C are G5 in R. It implies a contradiction, since R is a Baire
space. O
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Example 4.5. There exits a Borel non-measurable ambiguously 1-embedded sub-
set of a perfectly normal compact space.

PROOF: Let X be the “two arrows” space (see [5, p.212]), i.e. X = XoUX; where
Xo ={(z,0): x € (0,1]} and X3 = {(x,1) : € [0,1)}. The topology base on X
is generated by the sets

((x — = z] {0hH) U ((x — = :r) {1}) if z€(0,1] and neN
and
(x,x + — ) {0H U ([z,xz + — ) {1}) if z€[0,1) and neN.

For a set A C X we denote
t={re0,1]:(x,1) € A} and A~ = {x €[0,1]: (x,0) € A}.

It is not hard to verify that for every open or closed set A C X we have
|[ATAA™| < RNg. Tt follows that [BTAB™| < R for any Borel measurable set
BCX.

Let E = Xj. Since E* = and E~ = (0, 1], the set E is non-measurable. We
show that E is an ambiguously 1-embedded set. Indeed, let A C E be an F,-
and G5 subset of E. Then B = E'\ A is also an F,- and Gs-subset of E. Let A
and B be Gs-sets in X such that A= ANFE and B = BN E. The inequalities
|ATAA~| < g and [BYAB~| < Xy imply that |C| < Ry, where ¢ = AN B.
Hence, C' is an F,-set in X. Moreover, C is a Gs-set in X. Therefore, A \ C and
B \ C are Gs-sets in X. According to Lemma 4.2, there is an F,- and Gs-set D
in X such that A\C C D and DN(B\C)=0. Then DNE = A. O

5. Extension of real-valued K,-functions
Analogs of Proposition 5.1 and Theorem 5.3 for & = 1 were proved in [7].

Proposition 5.1. Let X be a topological space, E C X and 0 < o < wy. Then
the following conditions are equivalent:
(i) E is K}-embedded in X;
(ii) F is ambiguously a-embedded in X;
(i) (X, E,[c,d]) has the K,-extension property for any segment [c,d] C R.

PROOF: (i)==(ii) Take an arbitrary functionally ambiguous set A of the class «
in E and consider its characteristic function x4. Then x4 € KZ(E), as is easy
to check. Let f € K,(X) be an extension of xy4. Then the sets f~1(1) and
f71(0) are disjoint and belong to the a-th functionally multiplicative class in X.
According to Lemma 4.2 there exists a functionally ambiguous set B of the class
a in X such that f=1(1) € B and BN f~1(0) = (). It remains to notice that
BNE=f11)NE= le(l) = A. Hence, E is an ambiguously a-embedded set
in X.



On a-embedded sets and extension of mappings 389

(il)==(iii) Let f € K.(E,[c,d]). Define

(@) = {f(x), if €k,

inf f(E), if € X\E,

) f(=), if xe€k,
ha() = {sup F(E), if z€X\E,

Then ¢ < hy(x) < ho(z) < d for all x € X.
We prove that for any reals a < b there exists a function h € K, (X) such that

hy'(le,a]) CA7H0) and  hy'([b,d]) C ATH(D).
Fix a < b. Without loss of generality we may assume that
inf f(E) <a < b<sup f(E).

Denote

Ar = fH(e.a]), Az = f7H([b,d)).

Then A; and As are disjoint sets of the a-th functionally multiplicative class in E.
Using Lemma 4.2, we choose a functionally ambiguous set C of the class o in E
such that A; € C and C N Ay = (. Since E is an ambiguously a-embedded set
in X, there exists such a functionally ambiguous set D of the class « in X that
DN E =C. Moreover, by Proposition 4.1 there exist sets By and By of the a-th
functionally multiplicative class in X such that A; = EN B; when ¢ = 1,2. Let

Ay =DNBy, Ay=(X\D)NBy.

Then the sets /[1 and /[2 are disjoint and be}ong to the a-th fl{nctionally multi-
plicative class in X. Moreover, Ay = EN A; and Ay = EN As. According to
Proposition 3.4 there is a function h € K*(X) such that

h=10) = A, and A1) = A,
According to [12, Theorem 3.2] there exists a function g € K, (X) such that
ha() < g(2) < ha(a)

for all x € X. Clearly, g is an extension of f and g € K (X, [c,d]).

(iii)==>(i) Let f € K;(E) and let [f(z)| < C for all z € E. Consider a function
g € K,(X) which is an extension of f. Define a function r : R — [-C, (],
r(z) = min{C, max{z, —C}}. Obviously, r is continuous. Let h = r o g. Then
he K:(X) and h|g = f. Hence, E is K}-embedded in X. O
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Lemma 5.2. Let 0 < a < wy, X be a topological space and let E C X be such
an a-embedded set in X that for any set A of the a-th functionally multiplicative
class in X with EN A = ( the sets E and A are a-separated. Then E is an
ambiguously a-embedded set.

PRrROOF: Consider a functionally ambiguous set C' of the class a in E and denote
Cy = C, Co = E\ C. Then there exist sets C‘l and C’g of the a-th functionally
multiplicative class in X such that C~’i NE = C; when ¢ = 1,2. Then the set
A = C, NCy is of the a-th functionally multiplicative class in X and AN E = 0.
Let h € K,(X) be a function such that £ C h=1(0) and A C h~!(1). Denote
H = h_l(O) and H;, = HnN C~’i when ¢ = 1,2. Since H; and Hs are disjoint
sets of the a-th functionally multiplicative class in X, by Lemma 4.2 there is a
functionally ambiguous set D of the class « in X such that H; C D C X \ Hs.
Obviously, DN E = C. O

Theorem 5.3. Let 0 < o < wy and let E be a subset of a topological space X .
Then the following conditions are equivalent:
(i) E is Ky-embedded in X;
(ii) E is a-embedded in X and for any set A of the a-th functionally multi-
plicative class in X such that ENA = () the sets E and A are a-separated.

PROOF: (i)==(ii) Let C' C E be a set of the a-th functionally multiplicative class
in E. Then by Lemma 3.3 we choose a function f € K (E) such that C' = f~1(0).
If g € K,(X) is an extension of f, then the set B = g~1(0) belongs to the a-th
functionally multiplicative class in X and BNE = C. Hence, E is an a-embedded
set in X.

Now comnsider a set A of the a-th functionally multiplicative class in X such
that ENA = 0. According to Lemma 3.3 there is a function i € K*(X) such that
A=h"10). Forall z € E let f(z) = ﬁ Then f € K,(F). Let g € K,(X) be
an extension of f. For all x € X let p(z) = g(x) - h(x). Clearly, ¢ € K,(X). It
is not hard to verify that E C p=1(1) and A C ¢~1(0).

(i)==(i) Let us remark that according to Lemma 5.2 the set E is ambiguously
a-embedded in X.

Let f € K,(F) and let ¢ : R — (—1,1) be a homeomorphism. Using Proposi-
tion 5.1 to the function p o f : E — [—1, 1] we have that there exists a function
h € Ku(X,[-1,1]) such that h|g = po f. Let

A=hr"Y-1)Uuhr (D).

Then A belongs to the a-th functionally multiplicative class in X and AN E = ().
Therefore, there exists a function 1 € K,(X) such that A C ¢~1(0) and E C
¥~1(1). For all x € X define

g(x) = o7 (h(z) - P(x)).
Remark that g € K, (X) and g|g = f. O
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Corollary 5.4. Let 0 < o < w;y and let E be a subset of the a-th functionally
multiplicative class of a topological space X. Then the following conditions are
equivalent:

(i) E is Ky-embedded in X;

(ii) E is a-embedded in X .

6. K{-embedding versus Ki-embedding

A family U of non-empty open sets of a space X is called a w-base [4] if for any
non-empty open set V of X thereis U € Y with V C U.

Proposition 6.1. Let X be a perfect space of the first category with a countable
mw-base. Then there exist disjoint F,- and Gs-subsets A and B of X which are
dense in X and X = AU B.

Proor: Let (V, : n € N) be a 7m-base in X and X = |, X,,, where X,
is a closed nowhere dense subset of X for every n > 1. Let F; = X; and
E, = Xo \ U<, Xk for n > 2. Then E, is a nowhere dense Fi,- and Gs-subset
of X foreveryn>1,E,NE, =0ifn#m,and X =, E

Let mg = 0. We choose a number n; > 1 such that ((J!L, E,) NVi # 0
and let A7 = L En. Since X \ A1 = X, there exists a number m; > n4

n=1

such that (Up2, 1 En) N VI # 0. Set By = U2, 1 En. It follows from the
equality X \ (A; UB1) = X that there exists ng > my such that (2, . En)N
Vo # 0. Further, there is such my > ng that (U2, .4 En) N V2 # 0. Let

Ay = my41 En and By = unz not1 En- Repeating this process, we obtain the
sequence of numbers

mo <ng <mp <--- <N <mg <nNg41 < ...

and the sequence of sets

nk M
A= U EBEw Bi= | BEn k>x1,
n=mpg_1+1 n=nr+1

such that Ay NVj # 0 and By N'Vy # 0 for every k > 1.

Let A = ;o Ay and B = (J;o; Bi. Clearly, X = AUB, ANB = () and
A =B = X. Moreover, A and B are F,-sets in X. Therefore, A and B are F,-
and Gg-subsets of X. O

We say that a topological space X hereditarily has a countable m-base if every
its closed subspace has a countable 7-base.

Proposition 6.2. Let X be a hereditarily Baire space, E be a perfectly normal
ambiguously 1-embedded subspace of X which hereditarily has a countable -
base. Then E is a hereditarily Baire space.
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PROOF: Assume that E is not a hereditarily Baire space. Then there exists a
nonempty closed set C C X of the first category. Notice that C' is a perfectly
normal space with a countable m-base. According to Proposition 6.1 there exist
disjoint dense F,- and Gs-subsets A and B of C such that C = AUB. Since C is
F,- and Gs-set in E, the sets A and B are also F,, and G5 in E. Therefore there
exist disjoint functionally F,- and Gs-subsets A and B of X such that A = ANE
and B = BN E. Notice that the sets A and B are dense in C. Taking into
account that X is hereditarily Baire, we have that C' is a Baire space. It follows
a contradiction, since A and B are disjoint dense Gs-subsets of C. Il

Remark that there exist a metrizable separable Baire space X and its am-
biguously 1-embedded subspace E which is not a Baire space. Indeed, let X =
(Q@x{0}H)U(Rx(0,1]) and E = Q x {0}. Then FE is closed in X. Therefore, any
F,- and Gjs-subset C of FE is also F,- and G- in X. Hence, F is an ambiguously
l-embedded set in X.

Theorem 6.3. Let X be a hereditarily Baire space and let E C X be its perfect
Lindelof subspace which hereditarily has a countable m-base. Then E is K;-
embedded in X if and only if F is Kj-embedded in X.

PROOF: Since the sufficiency is obvious, we only need to prove the necessity.
According to Proposition 5.1 the set F is ambiguously 1-embedded in X . Using
Proposition 6.2, we have E is a hereditarily Baire space. Since FE is Lindelof,
Proposition 3.9(b) implies that E is 1-separated from any functionally Gs-set A
of X such that AN E = (). Therefore, by Theorem 5.3 the set E is Kj-embedded
in X. (|

7. A generalization of the Kuratowski theorem

K. Kuratowski [11, p.445] proved that every mapping f € K,(E,Y) has an
extension g € K,(X,Y) in the case when X is a metric space, Y is a Polish space
and F C X is a set of the multiplicative class a > 0.

In this section we will prove that the Kuratowski Extension Theorem is still
valid if X is a topological space and F is a K,-embedded subset of X.

We say that a subset A of a space X is discrete if any point ¢ € A has a
neighborhood U C X such that U N A = {a}.

Theorem 7.1 ([8, Theorem 2.11]). Let X be a topological space, Y be a metriz-
able separable space, 0 < o < wy and f € K,(X,Y). Then there exists a sequence
(fn)22, such that

(i) fn € Ko(X,Y) for every n;
(i) (fn)S2, is uniformly convergent to f;
(iii) f.(X) is at most countable and discrete for every n.

PRrROOF: Consider a metric d on Y which generates its topological structure. Since
(Y, d) is metric separable space, for every n there is a subset Y, = {y; » : 7 € I,}
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of Y such that Y,, is discrete, |I,| < X and for any y € Y there exists ¢ € I,, such
that d(y,yin) < 1/n (see [11, p.226]).

For every n € Nand i € I, put 4;,, = {z € X : d(f(2),yi,n) < 1/n}. Then
each A; ,, belongs to the a-th functionally additive class in X and UZ.€ I Ain=X
for every m. According to Lemma 3.2 for every n we can choose a sequence
(Fin)icr, of disjoint functionally ambiguous sets of the class a such that F; , C
A; n and Uz‘eln F,=X.

For all z € X and n € N let fu(z) = yipn if © € F;,, for some i € I,,. Notice
that f, € Ko(X,Y) for every n € N.

It remains to prove that the sequence (f,,)52; is uniformly convergent to f.
Indeed, fix z € X and n € N. Then there exists ¢ € I,, such that € Fj ,,. Since
Fin C Ain, d(f(2), fn(2)) = d(f(2),yin) < =, which completes the proof. [

Recall that a family (As : s € S) of subsets of a topological space X is called

a partition of X if X =J,cq As and A, N Ay = () for all s # t.

Proposition 7.2. Let 0 < o < wy, X be a topological space, E C X be an a-
embedded set which is a-separated from any disjoint set of the a-th functionally
multiplicative class in X and let (A, : n € N) be a partition of E by functionally
ambiguous sets of the class o in E. Then there is a partition (B, : n € N) of X
by functionally ambiguous sets of the class o in X such that A, = EN B,, for
every n € N.

PROOF: According to Proposition 5.2 for every n € N there exists a functionally
ambiguous set D,, of the class a in X such that A,, = D,,NE. By the assumption
there exists a function f € K,(X) such that £ C f~1(0) and X \ U,—, D,, C
f71(1). Let D = f~1(0). Then the set X \ D is of the a-th functionally additive
class in X. Then there exists a sequence (E,)°; of functionally ambiguous
set of the class a in X such that X \ D = |J._, E,,. For every n € N denote
C, = E, UD,. Then all the sets C,, are functionally ambiguous of the class « in
X and Uzo:l Cn = X. Let By = Cy and B,, = Cy, \ (U, Cx) for n > 2. Clearly,
every B,, is a functionally ambiguous set of the class o in X, B,NB,, =0 ifn #m
and U, , B, =U,~, C,, = X. Moreover, B, N E = A, for every n € N. O

Let 0 < a < wy, X and Y be topological spaces and £ C X. We say that a
collection (X, E,Y') has the K -extension property if every mapping f € K,(E,Y)
can be extended to a mapping g € K,(X,Y).

Theorem 7.3. Let 0 < a < wy and let E be a subset of a topological space X .
Then the following conditions are equivalent:

(i) F is K,-embedded in X;

(ii) (X, E,Y) has the K,-extension property for any Polish space Y.

PROOF: Since the implication (ii)=-(i) is obvious, we only need to prove the
implication (i)=-(ii). Let Y be a Polish space with a metric d which generates its
topological structure and (Y, d) is complete and let f € K,(E,Y).
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It follows from Theorem 7.1 that there exists a sequence of mappings f, €
K,(E,Y) which is uniformly convergent to f on E. Moreover, for every n € N
the set fn(E) = {yi,.n : in € I} is at most countable and discrete. We may
assume that each f,(F) consists of distinct points.

For every n € N and for each (i1,...,i,) € Iy X -+ X I, let

Bila"win = ffl(yi171) n---N fn_l(yin,n)'

Then for each iy € I, ..., in € I, the set B;,. ;, is functionally ambiguous of the
class « in E and the family (B;, ., 141 € I1,...,i, € I,,) is a partition of E for
every n € N. By Proposition 7.2 we choose a sequence of systems of functionally
ambiguous sets D;, . ; of the class o in X such that

(1) Dyy,..i, NE =By, ., forevery n € Nand (i1,...,4,) € 1 X --- X Ip;
(2) (Diy,...siny 41 € In,..., iy € I,) is a partition of X for every n € N.
For all n € N and (i1,...,in) € I1 X -+ X I, let
(3) Diy,..i, =0, if By, 4, = 0.
Notice that the system (B
set B;, ..., for every n € N.
For all i1 € I let

:ip+1 € Ih41) forms a partition of the

11y-+5tn tn+1

Ci, = Dy, .
Assume that for some n > 1 the system (Cy, .., : i1 € ©I1,...,in € Ip) of
functionally ambiguous sets of the class « in X is already defined and

(A) Biy ..., =ENCy, . i

(B) (Ciy,...ip, 291 € I1,...,in € I,) is a partition of X;
(C) Ci1,...,in =0if Bil,--.,in = @7
(D) (Cyy..in_1in © in € I,) is a partition of the set Cy, ;. .

Fix 41,...,4,. Since the set K = C;, . \Ukeln+1 D;, ... i,k is of the a-th
functionally multiplicative class in X and K N E = (), there exists a set H of the
a-th functionally multiplicative class in X such that F C H C X \ K. Using [8,
Lemma 2.1] we obtain that there exists a sequence (Ay)3° ; of disjoint functionally
ambiguous sets of the class o in X such that

Cil,...,in \H = G Ak.
k=1

Let
Mily»»»1in1in+l = @, if Dilyv»»in1in+l = @,
and
Mi17~~~inain+1 = (Ain+1 U Dila---7in7in+1) N Ci17~~~1in7 if Dil,---7in7in+1 7& 0.
Now let

C;

eyl = My 1,
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and

Ciroovsinyinss = My inines \ U My, i e i i1 > 1.
k<in41
Then for every n € N the system (Cj, . 4, 241 € I1,...,in € I,) of functionally
ambiguous sets of the class @ in X has the properties (A)—(D).
For eachn € N and z € X let

gn(x) = Yi,,n»

if x € Cy; .4, It is not hard to prove that g, € Ko(X,Y).

We show that the sequence (g,)52; is uniformly convergent on X. Indeed, let
zg € X and n,m € N. Without loss of generality, we may assume that n > m.
By the property (B), o € Ci,....i,, N Cj, ... j... It follows from (B) and (D) that

. '77‘7’1,

i1 = J1s- ., tm = jm. Take an arbitrary point « from the set B;, .. ;. , the existence
of which is guaranteed by the property (C). Then fp,(z) = ¥i,,,m = gm(z0) and
fu(x) = yi,m = gn(xo). Since the sequence (f,)22; is uniformly convergent

on E, limy m—oo d(Yi,, m, Yi, n) = 0. Hence, the sequence (g,)52, is uniformly
convergent on X.

Since Y is a complete space, for all x € X define g(z) = lim, 00 gn(z). Ac-
cording to the property (A), g(x) = f(x) for all x € E. Moreover, g € K,(X,Y)
as a uniform limit of functions from the class K,,. O

8. Open problems

Question 8.1. Does there exist a completely regular not perfectly normal space
in which any functionally Gs-set is 1-embedded?

Question 8.2. Does there exist a completely regular not perfectly normal space
in which any set is 1-embedded?

Question 8.3. Do there exist a normal space and its functionally Gs-subset
which is not 1-embedded?

Question 8.4. Do there exist a topological space X and its subspace E such
that E is K{-embedded and is not K;-embedded in X?
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