Previous |  Up |  Next

Article

Keywords:
half-linear differential equation; conjugacy criteria; variational principle; energy functional; half-linear trigonometric functions
Summary:
We establish new conjugacy criteria for half-linear second order differential equations. These criteria are based on the relationship between conjugacy of the investigated equation and nonpositivity of the associated energy functional.
References:
[1] Abd–Alla, M. Z., Abu–Risha, M. H.: Conjugacy criteria for the half–linear second order differential equation. Rocky Mountain J. Math. 38 (2008), 359–372. DOI 10.1216/RMJ-2008-38-2-359 | MR 2401558 | Zbl 1195.34048
[2] Chantladze, T., Kandelaki, N., Lomtatidze, A.: On zeros of solutions of a second order singular half-linear equation. Mem. Differential Equations Math. Phys. 17 (1999), 127–154. MR 1710580
[3] Chantladze, T., Lomtatidze, A., Ugulava, D.: Conjugacy and disconjugacy criteria for second order linear ordinary differential equations. Arch. Math. (Brno) 36 (2000), 313–323. MR 1811176 | Zbl 1054.34053
[4] Došlý, O.: Conjugacy criteria for second order differential equations. Rocky Mountain. J. Math. 23 (1993), 849–861. DOI 10.1216/rmjm/1181072527 | MR 1245450
[5] Došlý, O.: A remark on conjugacy of half–linear second order differential equations. Math. Slovaca 50 (2000), 67–79. MR 1764346 | Zbl 0959.34025
[6] Došlý, O., Elbert, Á.: Conjugacy of half–linear second order differential equations. Proc. Roy. Soc. Edinburgh Sect. A 130 (2000), 517–525. MR 1769240 | Zbl 0961.34020
[7] Došlý, O., Řehák, P.: Half-Linear Differential Equations. North-Holland Mathematics Studies, vol. 202, Elsevier Science B.V., Amsterdam, 2005. MR 2158903 | Zbl 1090.34001
[8] Elbert, Á.: A half–linear second order differential equation. Colloq. Math. Soc. János Bolyai 30 (1979), 158–180.
[9] Kumari, Sowjanaya I., Umamaheswaram, S.: Oscillation criteria for linear matrix Hamiltonian systems. J. Differential Equations 165 (2000), 174–198. DOI 10.1006/jdeq.1999.3746 | MR 1771793
[10] Lomtatidze, A.: Existence of conjugate points for second-order linear differential equations. Georgian Math. J. 2 (1995), 93–98. DOI 10.1007/BF02257736 | MR 1310503 | Zbl 0820.34018
[11] Mařík, R.: A remark on connection between conjugacy of half-linear differential equation and equation with mixed nonlinearities. Appl. Math. Lett. 24 (2011), 93–96. DOI 10.1016/j.aml.2010.08.024 | MR 2735120 | Zbl 1214.34031
[12] Müller–Pfeiff, E., Schott, Th.: On the existence of conjugate points for Sturm–Liouville differential equations. Z. Anal. Anwendungen 9 (1990), 155–164. MR 1063251
[13] Müller–Pfeiffer, E.: Existence of conjugate points for second and fourth order differential equations. Proc. Roy. Soc. Edinburgh Sect. A 89 (1981), 281–291. MR 0635764 | Zbl 0481.34019
[14] Müller–Pfeiffer, E.: On the existence of conjugate points for Sturm–Liouville equations on noncompact intervals. Math. Nachr. 152 (1991), 49–57. DOI 10.1002/mana.19911520106 | MR 1121223
[15] Peña, S.: Conjugacy criteria for half–linear differential equations. Arch. Math. (Brno) 35 (1999), 1–11. MR 1684518 | Zbl 1054.34055
[16] Tipler, F. J.: General relativity and conjugate ordinary differential equations. J. Differential Equations 30 (1978), 165–174. DOI 10.1016/0022-0396(78)90012-8 | MR 0513268 | Zbl 0362.34023
Partner of
EuDML logo