Previous |  Up |  Next

Article

Keywords:
hypersurfaces; rigidity; pinching; Ricci curvature; umbilicity tensor; higher order mean curvatures; $\theta $-quasi-isometry
Summary:
In this article, we prove new stability results for almost-Einstein hypersurfaces of the Euclidean space, based on previous eigenvalue pinching results. Then, we deduce some comparable results for almost umbilical hypersurfaces.
References:
[1] Aubry, E.: Finiteness of $\pi _1$ and geometric inequalities in almost positive Ricci curvature. Ann. Sci. École Norm. Sup. (4) 40 (4) (2007), 6757–695. MR 2191529 | Zbl 1141.53034
[2] Colbois, B., Grosjean, J. F.: A pinching theorem for the first eigenvalue of the Laplacian on hypersurfaces of the Euclidean space. Comment. Math. Helv. 82 (2007), 175–195. DOI 10.4171/CMH/88 | MR 2296061 | Zbl 1112.53003
[3] Fialkow, A.: Hypersurfaces of a space of constant curvature. Ann. of Math. (2) 39 (1938), 762–783. DOI 10.2307/1968462 | MR 1503435 | Zbl 0020.06601
[4] Grosjean, J. F.: Upper bounds for the first eigenvalue of the Laplacian on compact manifolds. Pacific J. Math. 206 (1) (2002), 93–111. DOI 10.2140/pjm.2002.206.93 | MR 1924820
[5] Grosjean, J. F., Roth, J.: Eigenvalue pinching and application to the stability and the almost umbilicity of hypersurfaces. Math. Z. 271 (1) (2012), 469–488. DOI 10.1007/s00209-011-0872-0 | MR 2917153 | Zbl 1243.53071
[6] Hoffman, D., Spruck, D.: Sobolev and isoperimetric inequalities for Riemannian submanifolds. Comm. Pure Appl. Math. 27 (1974), 715–727. DOI 10.1002/cpa.3160270601 | MR 0365424 | Zbl 0295.53025
[7] Reilly, R.C.: On the first eigenvalue of the Laplacian for compact submanifolds of Euclidean space. Comment. Math. Helv. 52 (1977), 525–533. DOI 10.1007/BF02567385 | MR 0482597 | Zbl 0382.53038
[8] Roth, J.: Pinching of the first eigenvalue of the Laplacian and almost-Einstein hypersurfaces of Euclidean space. Ann. Global Anal. Geom. 33 (3) (2008), 293–306. DOI 10.1007/s10455-007-9086-4 | MR 2390836
[9] Shiohama, K., Xu, H.: Rigidity and sphere theorems for submanifolds. Kyushu J. Math. 48 (2) (1994), 291–306. DOI 10.2206/kyushujm.48.291 | MR 1294532 | Zbl 0826.53045
[10] Shiohama, K., Xu, H.: Rigidity and sphere theorems for submanifolds II. Kyushu J. Math. 54 (1) (2000), 103–109. DOI 10.2206/kyushujm.54.103 | MR 1762795 | Zbl 1005.53028
[11] Thomas, T. Y.: On closed space of constant mean curvature. Amer. J. Math. 58 (1936), 702–704. DOI 10.2307/2371240 | MR 1507192
[12] Vlachos, T.: Almost-Einstein hypersurfaces in the Euclidean space. Illinois J. Math. 53 (4) (2009), 1221–1235. MR 2741186 | Zbl 1213.53072
Partner of
EuDML logo