Previous |  Up |  Next

Article

Keywords:
high-order nonlinear retarded differential equation; Lyapunov function; impulsive stabilization; exponential stability
Summary:
In this paper, impulsive stabilization of high-order nonlinear retarded differential equations is investigated by using Lyapunov functions and some analysis methods. Our results show that several non-impulsive unstable systems can be stabilized by imposition of impulsive controls. Some recent results are extended and improved. An example is given to demonstrate the effectiveness of the proposed control and stabilization methods.
References:
[1] Bainov, D. D., Simeonov, P. S.: Systems with Impulsive Effect: Stability, Theory and Applications. Ellis Horwood New York (1989). MR 1010418
[2] Fu, X., Yan, B., Liu, Y.: Introduction of Impulsive Differential Systems. Science Press Beijing (2005).
[3] Gimenes, L. P., Federson, M.: Existence and impulsive stability for second order retarded differential equations. Appl. Math. Comput. 177 (2006), 44-62. DOI 10.1016/j.amc.2005.10.038 | MR 2234496 | Zbl 1105.34049
[4] Gimenes, L. P., Federson, M., Táboas, P.: Impulsive stability for systems of second order retarded differential equations. Nonlinear Anal., Theory Methods Appl. 67 (2007), 545-553. DOI 10.1016/j.na.2006.06.006 | MR 2317186 | Zbl 1125.34061
[5] Khadra, A., Liu, X., Shen, X.: Application of impulsive synchronization to communication security. IEEE Trans. Circuits Systems I Fund. Theory Appl. 50 (2003), 341-351. DOI 10.1109/TCSI.2003.808839 | MR 1984762
[6] Lakshmikantham, V., Bajnov, D. D., Simeonov, P. S.: Theory of Impulsive Differential Equations. World Scientific Singapore (1989). MR 1082551 | Zbl 0719.34002
[7] Li, X.: Exponential stability of Hopfield neural networks with time-varying delays via impulsive control. Math. Methods Appl. Sci. 33 (2010), 1596-1604. DOI 10.1002/mma.1278 | MR 2680669 | Zbl 1247.34026
[8] Li, X.: New results on global exponential stabilization of impulsive functional differential equations with infinite delays or finite delays. Nonlinear Anal., Real World Appl. 11 (2010), 4194-4201. MR 2683867 | Zbl 1210.34103
[9] Li, X., Weng, P.: Impulsive stabilization of a class of nonlinear differential equations. Appl. Math., Ser. A (Chin. Ed.) 18 (2003), 408-416. MR 2023583 | Zbl 1050.34087
[10] Liu, X.: Impulsive stabilization and applications to population growth models. Rocky Mt. J. Math. 25 (1995), 381-395. DOI 10.1216/rmjm/1181072290 | MR 1340015 | Zbl 0832.34039
[11] Liu, X., Ballinger, G.: Existence and continuability of solutions for differential equations with delays and state-dependent impulses. Nonlinear Anal., Theory Methods Appl. 51 (2002), 633-647. DOI 10.1016/S0362-546X(01)00847-1 | MR 1920341 | Zbl 1015.34069
[12] Luo, Z., Shen, J.: Impulsive stabilization of functional differential equations with infinite delays. Appl. Math. Lett. 16 (2003), 695-701. DOI 10.1016/S0893-9659(03)00069-7 | MR 1986037 | Zbl 1068.93054
[13] Prussing, J. E., Wellnitz, L. J., Heckathorn, W. G.: Optimal impulsive time-fixed directascent interception. J. Guidance Control Dynam. 12 (1989), 487-494. DOI 10.2514/3.20436 | MR 1005019
[14] Weng, A., Sun, J.: Impulsive stabilization of second-order delay differential equations. Nonlinear Anal., Real World Appl. 8 (2007), 1410-1420. MR 2344990 | Zbl 1136.93036
[15] Yang, T.: Impulsive Systems and Control: Theory and Applications. Nova Science Publishers New York (2001).
[16] Zhang, H., Jiao, J., Chen, L.: Pest management through continuous and impulsive control strategies. BioSystems 90 (2007), 350-361. DOI 10.1016/j.biosystems.2006.09.038
Partner of
EuDML logo