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Abstract. In this paper, impulsive stabilization of high-order nonlinear retarded differen-
tial equations is investigated by using Lyapunov functions and some analysis methods. Our
results show that several non-impulsive unstable systems can be stabilized by imposition of
impulsive controls. Some recent results are extended and improved. An example is given
to demonstrate the effectiveness of the proposed control and stabilization methods.
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1. Introduction and Preliminaries

Over the last decade, impulsive control and impulsive stabilization for delay dif-

ferential equations have attracted a great deal of attention due to its potential appli-

cations in many fields such as biological systems, chemical reactions, dosage supply

in pharmacokinetics, ecosystems management, dynamic portfolio management and

stabilization and synchronization in chaotic secure communication systems and other

chaos systems [5], [6], [10], [13], [15], [16]. For example, in pest management, the

impulse models the process of periodic release of infective pests at fixed moments to

control pests population size, which can be described by an impulsive control system

[16]. In such system, the equilibrium solution that can be effectively controlled by

impulses denotes that the pests population size can be kept at acceptably low levels

This work was jointly supported by the National Natural Sciences Foundation of China:
Tianyuan Foundation (No. 11226136), the Project of Shandong Province Higher Ed-
ucational Science and Technology Program (No. J12LI04) and the Research Fund for
Excellent Young and Middle-aged Scientists of Shandong Province (No. BS2012DX039).
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in the long term. Moreover, in many cases, impulsive control can produce better

performance than continuous control; even in some cases, only impulsive approaches

can be used. A representative example is that a central bank cannot change its in-

terest rate everyday in order to regulate the money supply in a financial market [15].

In recent years, various results for impulsive control systems have been reported, see

[1], [2], [3], [4], [7], [8], [9], [10], [11], [12], [14]. Since impulses can make unstable

systems stable, and stable systems can become unstable after impulse effects, it is

reasonable to ask whether the solutions of high-order nonlinear retarded differen-

tial equations have similar properties. However, to the best of author’s knowledge,

there is almost no result on impulsive stabilization of high-order nonlinear retarded

differential equations.

In this paper, we consider the high-order nonlinear retarded differential equations

(1.1) x(n)(t) + a(t)x(γ)(t) + b(t)x̺(t) +

N
∑

i=1

fi(t, x
δ(gi(t))) = 0, t > t0,

and the corresponding equations with impulses

(1.2)











x(n)(t) + a(t)x(γ)(t) + b(t)x̺(t) +

N
∑

i=1

fi(t, x
δ(gi(t))) = 0, t > t0, t 6= tk,

x(tk) = Ik(x(t−k )), x(j)(tk) = Jjk(x(j)(t−k )), j = 1, 2, . . . , n − 1, t = tk.

We also consider other high-order nonlinear retarded differential equations

(1.3) x(n)(t) + a(t)x(γ)(t) + b(t)x̺(t) +

N
∑

i=1

∫ t

gi(t)

fi(t − u, xδ(u)) du = 0, t > t0,

and the corresponding equations with impulses

(1.4)











x(n)(t) + a(t)x(γ)(t) + b(t)x̺(t) +

N
∑

i=1

∫ t

gi(t)

fi(t − u, xδ(u)) du = 0, t > t0,

x(tk) = Ik(x(t−k )), x(j)(tk) = Jjk(x(j)(t−k )), j = 1, 2, . . . , n − 1, t = tk.

The following assumptions will be needed throughout the paper:

(A1) The impulsive sequence tk satisfies 0 6 t0 < t1 < . . . < tk < . . . , lim
k→+∞

tk =

+∞;
(A2) Ik, Jjk : R → R are continuous and Ik(0) = Jjk(0) = 0, k ∈ Z+;

(A3) a(t), b(t) : [t0,∞) → R are continuous functions;

(A4) fi : [t0,∞) × R → R, fi(t, 0) = 0, t > t0. There exists a sequence of functions

pi(t), where pi : [t0,∞) → R are continuous such that for all t > t0, |fi(t, x)| 6

|pi(t)||x|, i = 1, 2, . . . , N , where N > 1;
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(A5) gi : [t0,∞)×R → R are continuous satisfying 0 6 t−gi(t) < ∞ for all t > t0 > 0,

i = 1, 2, . . . , N ;

(A6) γ, ̺, δ are constants and 1 6 γ < n, ̺ > 1, δ > 1, γ ∈ Z+;

(A7) x′(t) denotes the right hand derivative of x(t), i.e.,

x′(tk) = x′(t+k ) = lim
h→0+

(x(tk + h) − x(t+k ))/h, and x′′(t) = [x′(t)]′, . . .,

x(n)(t) = [x(n−1)(t)]′.

For any σ > 0, let τσ
i = sup

t>σ
{t − gi(t)}, τσ = max

16i6N
τσ
i and let Φ(σ) denote the

set of functions ϕ : [σ − τσ, σ] → R which have at most finitely many discontinuity

points of the first kind and are right continuous at these points.

So for any σ > 0 and ϕ ∈ Φ, we can define the initial value condition of (1.1),

(1.2), (1.3), (1.4)

(1.5) x(t) = ϕ(t), t ∈ [σ − τσ , σ]; x(j)(σ) = xj0, j = 1, 2, . . . , n − 1.

If we let n = 2, γ = 1, δ = ̺ = 1, N = 1, g1(t) = t − τ1, f1(t, x) = p(t)x, then

(1.1) and (1.3) reduce to the differential equations

{

x′′(t) + a(t)x′(t) + b(t)x(t) + p(t)x(t − τ1) = 0, t > t0,

x(t) = ϕ(t), t0 − τ1 6 t 6 t0, x′(t0) = x0

and






x′′(t) + a(t)x′(t) + b(t)x(t) +

∫ t

t−τ1

p(t − u)x(u) du = 0, t > t0,

x(t) = ϕ(t), t0 − τ1 6 t 6 t0, x′(t0) = x0.

The existence of solutions and impulsive stabilization of these equations was exten-

sively investigated in [14].

If we let a(t) = 0, fi = 0, then (1.1) or (1.3) reduces to the differential equation

(1.6)

{

x(n)(t) + b(t)x̺(t) = 0, t > t0,

x(t0) = x0, x(j)(t0) = xj0, j = 1, 2, . . . , n − 1.

The stabilization of the solutions of (1.6) with impulse has been investigated in [9].

In the paper [4], the authors study the impulsive stabilization for the following

second order delay differential equations:

{

x′′(t) + f(t, x(t), x′(t)) + g(t, x(t), x(t − τ)) = 0, t > t0,

x(t) = ϕ(t), t0 − τ 6 t 6 t0, x′(t0) = y0

with some necessary assumptions which include: f, g : [t0,∞) × R × R → R are

continuous such that f(t, 0, 0) = g(t, 0, 0) = 0 and there exist constants F > 0,

G > 0 such that for all t > t0 and u, v ∈ R, |f(t, u, v)| 6 F |u|, |g(t, u, v)| 6 G|v|.
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In the present paper, we deal with the equations (1.1) and (1.3), which are more

general than those in [14] and [9]. To some extent the systems studied in [4] are

more general than the systems we study (when n = 2, γ = 1, δ = σ = 1, N = 1,

g1(t) = t− τ1 in (1.1)), but there still exist some cases to which the methods cannot

be applied, for example f(t, x, x′) = x3 + x′. The results we study can solve it.

In this paper, since (1.1) may reduce to first order impulsive differential equation,

we can obtain a global existence result of the solution of system (1.1), see [11], [2],

[1]. So we always assume the solution of (1.1) to exist globally in this paper.

Definition 1.1. For any σ > 0 and ϕ ∈ Φ, a function x : [σ − τσ, σ + a) → R,

a > 0, is said to be a solution of (1.2) and (1.5) through (σ, ϕ, {xj0}n−1
j=1 ) if

(i) x(t) and x(j)(t), j = 1, 2, . . . , n−1, are continuous on [σ−τσ, σ+a)\{tk; k ∈ Z+}
and are right continuous at tk;

(ii) x(t) satisfies (1.1) and (1.5);

(iii) x(t) and x(j)(t), j = 1, 2, . . . , n − 1 fulfil (1.2) for each k ∈ Z+.

R em a r k 1.1. The definition of a solution of (1.4) and (1.5) is similar to Defini-

tion 1.1, we omit it.

R em a r k 1.2. In the present paper, for convenience we use τ instead of τσ .

Definition 1.2. The zero solution of (1.1) is said to be exponentially stabilized

by impulses, if there exist α > 0, a sequence {tk}∞k=1, Ik, Jjk satisfying (A1) and

(A2) such that for all ε > 0 there exists a δ∗ > 0 such that, when the solution x(t)

of (1.1) through (σ, ϕ, {xj0}n−1
j=1 ) fulfils

(1.7)

(

‖ϕ‖2
t0 +

n−1
∑

j=1

(xj0)
2

)
1
2

6 δ∗,

then

(1.8)

(

x2(t) +

n−1
∑

j=1

(x(j)(t))2
)

1
2

6 ε exp[−α(t − t0)], t > t0.

where ‖ϕ‖t = sup
t−τ6s6t

|ϕ(s)|.

Definition 1.3. The zero solution of (1.1) is said to be exponentially stabilized

by periodic impulses if there exist α > 0, a sequence {tk}∞k=1 satisfying (A1) and

tk − tk−1 = d (> 0 constant), Ik, Jjk satisfying (A2) and

Ik(x) = I(x), Jjk(x) = J(x), x ∈ R,

such that for all ε > 0 there exists a δ > 0 such that the solution x(t) of (1.1) through

(σ, ϕ, {xj0}n−1
j=1 ) fulfils (1.7) and (1.8).
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2. Main results

Theorem 2.1. Assume that conditions (A3)–(A7) hold. Moreover, suppose that

(A8) there exists a constant β > 0 such that g′i(t) > β, t > 0, i = 1, 2, . . . , N ;

(A9) there exist constants a, b, pi > 0, i = 1, 2, . . . , N such that |a(t)| 6 a, |b(t)| 6 b,

|pi(t)| 6 pi;

(A10)

τ

β

N
∑

i=1

pi < exp

[

−
(

2 + a + b +

N
∑

i=1

pi

β

)

τ

]

.

Then the zero solution of (1.1) can be exponentially stabilized by impulses.

P r o o f. Since (A10) holds, there exist α > 0 and λ > τ such that

1

β

N
∑

i=1

piτi 6
τ

β

N
∑

i=1

pi 6 exp[−2α(λ + τ)] exp

[

−
(

2 + a + b +

N
∑

i=1

pi

β

)

λ

]

.

Then one may choose a sequence {tk}∞k=1 satisfying (A1) and τ 6 tk+1 − tk 6 λ,

t0 = σ. Note that g′i(t) > β > 0, hence g is nondecreasing in t for t > 0. Thus

one may choose a sequence {ηk}∞k=1, ηk ∈ (0, 1) such that, when the solution x(t) =

x(t, tk, x(tk), {xjk}n−1
j=1 ) through (tk, x(tk), {xjk}n−1

j=1 ) fulfils

(

x2(tk) +

n−1
∑

j=1

(x(j)(tk))2
)

1
2

6 ηk,

then

(2.1)

(

x2(t) +

n−1
∑

j=1

(x(j)(t))2
)

1
2

< 1, t ∈ [tk, tk+1).

Let

|Ik(u)| = dk|u|, |Jjk(v)| = dk|v|,

dk = min

{

ηk exp[α(t1 − σ)],

(

Γk −
N

∑

i=1

pi

β
τi

)
1
2
}

,

Γk = exp[−2α(tk+1 − tk + τ)] exp

[

−
(

2 + a + b +

N
∑

i=1

pi

β

)

(tk+1 − tk)

]

.

It is obvious that dk > 0.
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For any ε ∈ (0, 1), let

δ∗ = min

{

η0, ε, ε

(

1 +

N
∑

i=1

pi

β
τi

)

−1/4

× exp[−α(t1 − σ)] exp

[

− 1

2

(

2 + a + b +
N

∑

i=1

pi

β

)

(t1 − σ)

]}

.

Next, we prove that each solution x(t) = x(t, σ, ϕ, {xj0}n−1
j=1 ) of (1.2) and (1.5) with

(

‖ϕ‖2
σ +

n−1
∑

j=1

(xj0)
2

)
1
2

6 δ∗

satisfies
(

x2(t) +

n−1
∑

j=1

(x(j)(t))2
)

1
2

6 ε exp[−α(t − t0)], t > t0,

where ‖ϕ‖t = sup
t−τ6s6t

|ϕ(s)|.

First, for t ∈ [σ, t1), we choose a Lyapunov function

V (t) = x2(t) +

n−1
∑

i=1

(x(j)(t))2 +

N
∑

i=1

pi

β

∫ t

gi(t)

x2δ(s) ds.

It follows from conditions (A8)–(A10) and (2.1) that

(1) V (t) > x2(t) +
n−1
∑

i=1

(x(j)(t))2;

(2)

V (t) 6 x2(t) +

n−1
∑

i=1

(x(j)(t))2 +

N
∑

i=1

pi

β

∫ t

t−τi

x2δ(s) ds

6 x2(t) +
n−1
∑

i=1

(x(j)(t))2 +
N

∑

i=1

pi

β
τi sup

t−τi6s6t
|x(s)|2δ

6 x2(t) +

n−1
∑

i=1

(x(j)(t))2 +

N
∑

i=1

pi

β
τi‖x‖2δ

t

6 x2(t) +

n−1
∑

i=1

(x(j)(t))2 +

N
∑

i=1

pi

β
τi‖x‖2

t

6

(

1 +

N
∑

i=1

pi

β
τi

)(

‖x‖2
t +

n−1
∑

i=1

(x(j)(t))2
)

,

where ‖x‖t = sup
t−τ6s6t

|x(s)|.
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(3) We denote by V ′(t) the right upper derivative of V (t) along the solution of

(1.1)–(1.3). Then

V ′(t) = 2x(t)x′(t) + 2x′(t)x′′(t) + . . . + 2x(n−1)(t)x(n)(t)

+
N

∑

i=1

pi

β
x2δ(t) −

N
∑

i=1

pi

β
x2δ(gi(t))g

′

i(t)

= 2x(t)x′(t) + 2x′(t)x′′(t) + . . .

+ 2x(n−1)(t)

{

− a(t)x(γ)(t) − b(t)x̺(t) −
N

∑

i=1

fi

(

t, xδ(gi(t))
)

}

+
N

∑

i=1

pi

β
x2δ(t) −

N
∑

i=1

pi

β
x2δ(gi(t))g

′

i(t)

6 x2(t) + [x′(t)]2 + . . . + [x(n−2)(t)]2 + [x(n−1)(t)]2

+ a
(

[x(n−1)(t)]2 + [x(γ)(t)]2
)

+ b
(

[x(n−1)(t)]2 + x2(t)
)

+ 2|x(n−1)(t)|
N

∑

i=1

|pi(t)||x2δ(gi(t))| +
N

∑

i=1

pi

β
x2δ(t) −

N
∑

i=1

pi

β
x2δ(gi(t))g

′

i(t)

6 x2(t) + [x′(t)]2 + . . . + [x(n−2)(t)]2 + [x(n−1)(t)]2

+ a
(

[x(n−1)(t)]2 + [x(γ)(t)]2
)

+ b
(

[x(n−1)(t)]2 + x2(t)
)

+

N
∑

i=1

pi

(

[x(n−1)(t)]2 + x2δ(gi(t))
)

+

N
∑

i=1

pi

β
x2δ(t) −

N
∑

i=1

pi

β
x2δ(gi(t))g

′

i(t)

6 x2(t) + [x′(t)]2 + . . . + [x(n−2)(t)]2 + [x(n−1)(t)]2

+ a
(

[x(n−1)(t)]2 + [x(γ)(t)]2
)

+ b
(

[x(n−1)(t)]2 + x2(t)
)

+

N
∑

i=1

pi[x
(n−1)(t)]2 +

N
∑

i=1

pi

β
x2(t) +

N
∑

i=1

pix
2δ(gi(t))

(

1 − g′i(t)

β

)

6

(

1 + b +

N
∑

i=1

pi

β

)

x2(t) + 2[x′(t)]2 + . . . + 2[x(γ−1)(t)]2 + (a + 2)[x(γ)(t)]2

+ 2[x(γ+1)(t)]2 + . . . +

(

2 + a +
N

∑

i=1

pi

β

)

[x(n−1)(t)]2

6

(

2 + a + b +

N
∑

i=1

pi

β

)

V (t),

which implies that

V (t) 6 V (t0) exp

(

2 + a + b +

N
∑

i=1

pi

β

)

(t − σ), t ∈ [σ, t1).
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Thus for t ∈ [σ, t1) we get

x2(t) +

n−1
∑

i=1

(x(j)(t))2 6 V (t) 6 V (t0) exp

(

2 + a + b +

N
∑

i=1

pi

β

)

(t − σ)

< V (t0) exp

(

2 + a + b +

N
∑

i=1

pi

β

)

(t1 − σ)

6

(

1 +

N
∑

i=1

pi

β
τi

)(

‖x‖2
σ +

n−1
∑

i=1

(x(j)(σ))2
)

exp

(

2 + a + b +

N
∑

i=1

pi

β

)

(t1 − σ)

=

(

1 +
N

∑

i=1

pi

β
τi

)(

‖ϕ‖2
σ +

n−1
∑

j=1

x2
j0

)

exp

(

2 + a + b +
N

∑

i=1

pi

β

)

(t1 − σ)

6

(

1 +

N
∑

i=1

pi

β
τi

)

δ∗2 exp

(

2 + a + b +

N
∑

i=1

pi

β

)

(t1 − σ)

6 ε2 exp[−2α(t1 − σ)] < ε2 exp[−2α(t − σ)],

which implies that

(

x2(t) +

n−1
∑

i=1

(x(j)(t))2
)

1
2

< ε exp[−α(t − σ)], t ∈ [σ, t1).

Especially,
(

x2(t−1 ) +

n−1
∑

i=1

(x(j)(t−1 ))2
)

1
2

6 ε exp[−α(t1 − σ)].

It then follows that

(

x2(t1) +

n−1
∑

i=1

(x(j)(t1))
2

)
1
2

= d1

(

x2(t−1 ) +

n−1
∑

i=1

(x(j)(t−1 ))2
)

1
2

6 d1ε exp[−α(t1 − σ)] < d1 exp[−α(t1 − σ)] 6 η1,

which implies that, for t ∈ [t1, t2),

(2.2)

(

x2(t) +

n−1
∑

i=1

(x(j)(t))2
)

1
2

< 1.

For t ∈ [t1, t2), we still choose a Lyapunov function

V (t) = x2(t) +

n−1
∑

i=1

(x(j)(t))2 +

N
∑

i=1

pi

β

∫ t

gi(t)

x2δ(s) ds.
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Then we have

x2(t) +

n−1
∑

i=1

(x(j)(t))2

6 V (t)

6 V (t1) exp

(

2 + a + b +

N
∑

i=1

pi

β

)

(t − t1)

< V (t1) exp

(

2 + a + b +

N
∑

i=1

pi

β

)

(t2 − t1)

=

[

x2(t1) +

n−1
∑

i=1

(x(j)(t1))
2 +

N
∑

i=1

pi

β

∫ t1

gi(t1)

x2δ(s) ds

]

× exp

(

2 + a + b +

N
∑

i=1

pi

β

)

(t2 − t1)

6

{

d2
1

[

x2(t−1 ) +
n−1
∑

i=1

(x(j)(t−1 ))2
]

+
N

∑

i=1

pi

β
τi sup

t1−τi6t6t1

x2δ(t)

}

× exp

(

2 + a + b +

N
∑

i=1

pi

β

)

(t2 − t1)

6

{

d2
1

[

x2(t−1 ) +

n−1
∑

i=1

(x(j)(t−1 ))2
]

+

N
∑

i=1

pi

β
τi sup

t1−τ6t6t1

x2(t)

}

× exp

(

2 + a + b +

N
∑

i=1

pi

β

)

(t2 − t1)

6

{

d2
1 sup

t1−τ6t6t1

[

x2(t) +
n−1
∑

i=1

(x(j)(t))2
]

+
N

∑

i=1

pi

β
τi sup

t1−τ6t6t1

x2(t)

}

× exp

(

2 + a + b +

N
∑

i=1

pi

β

)

(t2 − t1)

6

(

d2
1 +

N
∑

i=1

pi

β
τi

)

sup
t1−τ6t6t1

[

x2(t) +

n−1
∑

i=1

(x(j)(t))2
]

× exp

(

2 + a + b +

N
∑

i=1

pi

β

)

(t2 − t1)

6 Γ1ε
2 exp(−2α(t1 − σ − τ)) exp

(

2 + a + b +
N

∑

i=1

pi

β

)

(t2 − t1)

6 ε2 exp[−2α(t2 − σ)]

< ε2 exp[−2α(t − σ)], t ∈ [t1, t2).
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Hence,
(

x2(t) +

n−1
∑

i=1

(x(j)(t))2
)

1
2

< ε exp[−α(t − σ)], t ∈ [t1, t2).

Arguing as before, by induction hypothesis we may prove, in general, that for k > 1,

(

x2(t) +

n−1
∑

i=1

(x(j)(t))2
)

1
2

< ε exp[−α(t − σ)], t ∈ [tk, tk+1).

Therefore, we finally obtain

(

x2(t) +

n−1
∑

i=1

(x(j)(t))2
)

1
2

< ε exp[−α(t − σ)], t > σ,

and the proof is therefore complete. �

R em a r k 2.1. In Theorem 2.1, we choose linear functions Ik(u) = dku, Jjk(v) =

dkv. In fact, from the procedure in the proof of Theorem 2.1, it is not difficult to

realize that we only need Ik(u), Jjk(v) to satisfy: |Ik(u)| 6 dk|u|, |Jjk(v)| 6 dk|v|.

R em a r k 2.2. If γ = n − 1 in Theorem 2.1, then the condition |a(t)| 6 a can be

replaced by a(t) > 0.

R em a r k 2.3. Suppose that all the conditions in Theorem 2.1 hold. Then the

procedure in Theorem 2.1 can be used to prove the exponential stabilization for the

high-order nonlinear retarded differential equations

x(n)(t) + h(t, x(t), x(γ)(t)) +

N
∑

i=1

fi(t, x
δ(gi(t))) = 0, t > t0,

and the corresponding equations with impulses







x(n)(t) + h(t, x(t), x(γ)(t)) +
N
∑

i=1

fi(t, x
δ(gi(t))) = 0, t > t0, t 6= tk,

x(tk) = Ik(t−k ), x(j)(tk) = Jjk(t−k ), j = 1, 2, . . . , n − 1, t = tk,

where there exist two continuous functions h1, h2 such that |h(t, x, y)| 6 |h1(t)||x|+
|h2(t)||y|.

R em a r k 2.4. In Remark 2.3, we can further consider the high-order nonlinear

retarded differential equations

x(n)(t) + h(t, x(t), x(γ)(t)) + f(t, x(g1(t)), x(g2(t)), . . . , x(gN (t))) = 0, t > t0,
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and the corresponding equations with impulses











x(n)(t) + h(t, x(t), x(γ)(t)) + f(t, x(g1(t)), x(g2(t)), . . . , x(gN (t))) = 0,

t > t0, t 6= tk,

x(tk) = Ik(t−k ), x(j)(tk) = Jjk(t−k ), j = 1, 2, . . . , n − 1, t = tk,

where there exists a sequence of continuous functions ωi, i = 1, 2, . . . , N such that

|f(t, µ1, µ2, . . . , µN )| 6
N
∑

i=1

|ωi(t)||µi|.

Theorem 2.2. (Case: δ = ̺ = 1.) Assume that the conditions in Theorem 2.1

hold. Then the zero solution of (1.1) can be exponentially stabilized by periodic

impulses.

P r o o f. Here one may choose a sequence {tk}∞k=1 satisfying (A1) and tk+1−tk =

λ > τ , t0 = σ. Note that since δ = ̺ = 1, we only need to choose

|Ik(u)| = d|u|, |Jjk(v)| = d|v|, d =

(

Γ −
N

∑

i=1

piτi

β

)
1
2

,

Γ = exp[−2α(λ + τ)] exp

[

−
(

2 + a + b +

N
∑

i=1

pi

β

)

λ

]

.

Since this proof is similar to the proof of Theorem 2.1, we omit it partly. Finally,

it can be deduced that each solution x(t) = x(t, σ, ϕ, {xj0}n−1
j=1 ) of (1.2) and (1.5)

through (σ, ϕ, {xj0}n−1
j=1 ) fulfils

(

‖ϕ‖2
σ +

n−1
∑

j=1

(xj0)
2

)
1
2

6 δ∗,

hence
(

x2(t) +

n−1
∑

j=1

(x(j)(t))2
)

1
2

6 ε exp[−α(t − t0)], t > t0

where ‖ϕ‖t = sup
t−τ6s6t

|ϕ(s)|. �
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Theorem 2.3. (Case: either δ or ̺ > 1.) Assume that the conditions in Theo-

rem 2.1 still hold. Moreover, suppose that

(A11) there exists a nonnegative constant θ such that gi(t + θ) = gi(t) + θ;

(A12) there exists a nonnegative constant µ such that a(t + µ) = a(t), b(t + µ) =

b(t), f(t + µ, x) = f(t, x).

Then the zero solution of (1.1) can be exponentially stabilized by periodic impulses.

P r o o f. Suppose that τ < T , T = θµ. Or else, we can choose kT to replace T

such that kT > τ , k ∈ Z+. Then let tk+1 − tk = T , t0 = σ. Similarly to the proof of

Theorem 2.1, for t ∈ [t1, t2) we choose

d1 = min

{

η1 exp[αT ],

(

Γ1 −
N

∑

i=1

piτi

β

)
1
2
}

,

Γ1 = exp[−α(T + τ)] exp

[

−
(

2 + a + b +
N

∑

i=1

pi

β

)

T

]

.

Since η1 depends only on system (1.1), d1 also depends only on system (1.1). It then

follows from Theorem 2.1 that the solution x(t) = x(t, t1, x(t1), {xj1}n−1
j=1 ) through

(t1, x(t1), {xj1}n−1
j=1 ) fulfils

(

x2(t1) +
n−1
∑

j=1

(x(j)(t1))
2

)
1
2

6 η1,

hence
(

x2(t) +

n−1
∑

j=1

(x(j)(t))2
)

1
2

< 1, t ∈ [t1, t2).

Next we prove that, for t ∈ [tk, tk+1), the solution x(t) = x(t, tk, x(tk), {xjk}n−1
j=1 )

through (tk, x(tk), {xjk}n−1
j=1 ) fulfils

(

x2(tk) +

n−1
∑

j=1

(x(j)(tk))2
)

1
2

6 η1,

hence
(

x2(t) +

n−1
∑

j=1

(x(j)(t))2
)

1
2

< 1, t ∈ [tk, tk+1).

Since tk+1 − tk = T , [tk, tk+1) = [t1 + (k − 1)T, t1 + kT ). We define Ω(t) = x(t +

(k − 1)T ) where x(t + (k − 1)T ) = x(t + (k − 1)T, tk, x(tk), {xjk}n−1
j=1 ). Hence, we
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note that the solution x(t + (k − 1)T ) of (1.1) begins at t = tk and ends at t = tk+1,

which means that the function Ω(t) begins at t = t1 and ends at t = t2. On the

other hand, in view of (A11) and (A12) we get

Ω(n)(t) = x(n)(t + (k − 1)T )

= − a(t + (k − 1)T )x(γ)(t + (k − 1)T ) − b(t + (k − 1)T )x̺(t + (k − 1)T )

−
N

∑

i=1

fi(t + (k − 1)T, xδ(gi(t + (k − 1)T )))

= − a(t)x(γ)(t + (k − 1)T ) − b(t)x̺(t + (k − 1)T ) −
N

∑

i=1

fi(t, x
δ(gi(t) + (k − 1)T ))

= − a(t)Ω(γ)(t) − b(t)Ω̺(t) −
N

∑

i=1

fi(t, Ω
δ(gi(t))).

Hence, Ω(t) is a solution of (1.1) which begins at t = t1 and ends at t = t2. As

mentioned above, we obtain

(

Ω2(t1) +

n−1
∑

j=1

(Ω(j)(t1))
2

)
1
2

=

(

x2(t1 + (k − 1)T ) +

n−1
∑

j=1

x(j)(t1 + (k − 1)T )2
)

1
2

=

(

x2(tk) +

n−1
∑

j=1

(x(j)(tk))2
)

1
2

6 η1.

Consequently, for t ∈ [t1, t2),

(

x2(t + (k − 1)T ) +
n−1
∑

j=1

(x(j)(t + (k − 1)T ))2
)

1
2

=

(

Ω2(t) +
n−1
∑

j=1

(Ω(j)(t))2
)

1
2

< 1,

t ∈ [t1, t2),

which implies that

(

x2(t) +

n−1
∑

j=1

(x(j)(t))2
)

1
2

< 1, t ∈ [tk, tk+1).

Then we only need to choose

dk = d = min

{

η1 exp[αT ],

(

Γ −
N

∑

i=1

piτi

β

)
1
2
}

,

Γ = exp[−α(T + τ)] exp

[

−
(

2 + a + b +

N
∑

i=1

pi

β

)

T

]

.

We see that dk depends only on system (1.1). The rest of the proof is similar to

Theorem 2.1 and we omit it here. The proof is complete. �
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R em a r k 2.5. Let fi = a = 0 in Theorem 2.3. The corresponding results have

been investigated in [9]. If n = 2, γ = 1, ̺ = 1, fi(t, x) = p(t)x, gi(t) = t − τ , the

corresponding results have been given in [14].

Next we consider high-order nonlinear retarded differential equations (1.3) and the

corresponding equations with impulses (1.4).

Theorem 2.4. Assume that conditions (A3)–(A9) hold. Moreover, suppose that

(A11)

τ2

2β

N
∑

i=1

pi < exp

[

−
(

2 + a + b +

N
∑

i=1

pi

β
τi

)

τ

]

.

Then the zero solution of (1.3) can be exponentially stabilized by impulses.

P r o o f. Since (A11) holds, there exist α > 0 and λ > τ such that

1

2β

N
∑

i=1

piτ
2
i 6 τ

N
∑

i=1

pi 6 exp[−α(λ + τ)] exp

[

−
(

2 + a + b +
N

∑

i=1

pi

β
τi

)

λ

]

.

Similarly to Theorem 2.1, we choose a sequence {tk}∞k=1 satisfying (A1) and τ 6

tk+1 − tk 6 λ, t0 = σ. Considering condition (A8), we choose a sequence {ηk}∞k=1,

ηk ∈ (0, 1) such that, when the solution x(t) = x(t, tk, x(tk), {xjk}n−1
j=1 ) through

(tk, x(tk), {xjk}n−1
j=1 ) fulfils

(

x2(tk) +

n−1
∑

j=1

(x(j)(tk))2
)

1
2

6 ηk,

then
(

x2(t) +

n−1
∑

j=1

(x(j)(t))2
)

1
2

< 1, t ∈ [tk, tk+1).

Let

|Ik(u)| = dk|u|, |Jjk(v)| = dk|v|,

dk = min

{

ηk exp[α(t1 − σ)],

(

Γk −
N

∑

i=1

pi

2β
τ2
i

)
1
2
}

,

Γk = exp[−2α(tk+1 − tk + τ)] exp

[

−
(

2 + a + b +

N
∑

i=1

pi

β
τi

)

(tk+1 − tk)

]

,

which implies that dk > 0.
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For any ε ∈ (0, 1), let

δ∗ = min

{

η0, ε, ε

(

1 +

N
∑

i=1

pi

2β
τ2
i

)

−1/4

× exp[−α(t1 − σ)] exp

[

− 1

2

(

2 + a + b +
N

∑

i=1

pi

β

)

(t1 − σ)

]}

.

Next, we prove that each solution x(t) = x(t, σ, ϕ, {xj0}n−1
j=1 ) of (1.4) and (1.5) with

(

‖ϕ‖2
σ +

n−1
∑

j=1

(xj0)
2

)
1
2

6 δ∗

satisfies
(

x2(t) +

n−1
∑

j=1

(x(j)(t))2
)

1
2

6 ε exp[−α(t − t0)], t > t0,

where ‖ϕ‖t = sup
t−τ6s6t

|ϕ(s)|.

First, for t ∈ [σ, t1) we choose a Lyapunov function

V (t) = x2(t) +

n−1
∑

i=1

(x(j)(t))2 +

N
∑

i=1

pi

β

∫ t

gi(t)

∫ t

u

x2δ(s) ds du.

Then V (t) satisfies:

(1) V (t) > x2(t) +
n−1
∑

i=1

(x(j)(t))2;

(2)

V (t) 6 x2(t) +

n−1
∑

i=1

(x(j)(t))2 +

N
∑

i=1

pi

β
sup

gi(t)6s6t

|x(s)|2δ

∫ t

gi(t)

∫ t

u

ds du

6 x2(t) +
n−1
∑

i=1

(x(j)(t))2 +
N

∑

i=1

pi

β
sup

gi(t)6s6t

|x(s)|2δ (t − gi(t))
2

2

6 x2(t) +

n−1
∑

i=1

(x(j)(t))2 +

N
∑

i=1

pi

β
sup

t−τi6s6t
|x(s)|2δ τ2

i

2

6 x2(t) +

n−1
∑

i=1

(x(j)(t))2 +

N
∑

i=1

pi

2β
τ2
i ‖x‖2

t

6

(

1 +

N
∑

i=1

pi

2β
τ2
i

)(

‖x‖2
t +

n−1
∑

i=1

(x(j)(t))2
)

,

where ‖x‖t = sup
t−τ6s6t

|x(s)|.
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(3) We denote by V ′(t) the right upper derivative of V (t) along the solution of (1.4)

and (1.5). Then

V ′(t) = 2x(t)x′(t) + 2x′(t)x′′(t) + . . . + 2x(n−1)(t)x(n)(t)

+
N

∑

i=1

pi

β
x2δ(t)(t − gi(t)) −

N
∑

i=1

pi

β
g′i(t)

∫ t

gi(t)

x2δ(s) ds

6 2x(t)x′(t) + 2x′(t)x′′(t) + . . . + 2x(n−1)(t)

{

− a(t)x(γ)(t) − b(t)x̺(t)

−
N

∑

i=1

∫ t

gi(t)

fi(t − u, xδ(u)) du

}

+

N
∑

i=1

pi

β
τix

2δ(t) −
N

∑

i=1

pi

β
g′i(t)

∫ t

gi(t)

x2δ(s) ds

6 x2(t) + [x′(t)]2 + . . . + [x(n−2)(t)]2 + [x(n−1)(t)]2 + a([x(n−1)(t)]2

+ [x(γ)(t)]2) + b([x(n−1)(t)]2 + x2̺(t))

+ 2|x(n−1)(t)|
N

∑

i=1

∫ t

gi(t)

|pi(t − u)||x2δ(u)| du

+

N
∑

i=1

pi

β
τix

2δ(t) −
N

∑

i=1

pi

β
g′i(t)

∫ t

gi(t)

x2δ(s) ds

6 x2(t) + [x′(t)]2 + . . . + [x(n−2)(t)]2 + [x(n−1)(t)]2 + a([x(n−1)(t)]2

+ [x(γ)(t)]2) + b([x(n−1)(t)]2 + x2(t)) +

N
∑

i=1

pi

∫ t

gi(t)

([x(n−1)(t)]2 + x2δ(u)) du

+

N
∑

i=1

pi

β
τix

2δ(t) −
N

∑

i=1

pi

β
g′i(t)

∫ t

gi(t)

x2δ(s) ds

6 x2(t) + [x′(t)]2 + . . . + [x(n−2)(t)]2 + [x(n−1)(t)]2 + a([x(n−1)(t)]2

+ [x(γ)(t)]2) + b([x(n−1)(t)]2 + x2(t)) +

N
∑

i=1

piτi[x
(n−1)(t)]2

+
N

∑

i=1

pi

β
τix

2(t) +
N

∑

i=1

pi

∫ t

gi(t)

x2δ(u) du
(

1 − g′i(t)

β

)

6

(

1 + b +

N
∑

i=1

pi

β
τi

)

x2(t) + 2[x′(t)]2 + . . . + 2[x(γ−1)(t)]2 + (a + 2)[x(γ)(t)]2

+ 2[x(γ+1)(t)]2 + . . . +

(

2 + a +

N
∑

i=1

pi

β
τi

)

[x(n−1)(t)]2

6

(

2 + a + b +

N
∑

i=1

pi

β
τi

)

V (t),
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which implies that

V (t) 6 V (t0) exp

(

2 + a + b +

N
∑

i=1

pi

β
τi

)

(t − σ), t ∈ [σ, t1).

Thus for t ∈ [σ, t1) we get

x2(t) +

n−1
∑

i=1

(x(j)(t))2 6 V (t) 6 V (σ) exp

(

2 + a + b +

N
∑

i=1

pi

β
τi

)

(t − σ)

< V (σ) exp

(

2 + a + b +

N
∑

i=1

pi

β
τi

)

(t1 − σ)

6

(

1 +

N
∑

i=1

pi

2β
τ2
i

)(

‖x‖2
σ +

n−1
∑

i=1

(x(j)(σ))2
)

exp

(

2 + a + b +

N
∑

i=1

pi

β
τi

)

(t1 − σ)

=

(

1 +

N
∑

i=1

pi

2β
τ2
i

)(

‖ϕ‖2
σ +

n−1
∑

j=1

x2
j0

)

exp

(

2 + a + b +

N
∑

i=1

pi

β
τi

)

(t1 − σ)

6

(

1 +

N
∑

i=1

pi

2β
τ2
i

)

δ∗2 exp

(

2 + a + b +

N
∑

i=1

pi

β
τi

)

(t1 − σ)

= ε2 exp[−2α(t1 − σ)] < ε2 exp[−2α(t − σ)],

which implies that

(

x2(t) +

n−1
∑

i=1

(x(j)(t))2
)

1
2

< ε exp[−α(t − σ)], t ∈ [σ, t1).

Especially,
(

x2(t−1 ) +
n−1
∑

i=1

(x(j)(t−1 ))2
)

1
2

< ε exp[−α(t1 − σ)].

It then follows that

(

x2(t1) +
n−1
∑

i=1

(x(j)(t1))
2

)
1
2

= d1

(

x2(t−1 ) +
n−1
∑

i=1

(x(j)(t−1 ))2
)

1
2

< d1ε exp[−α(t1 − σ)] < d1 exp[−α(t1 − σ)] = η1.

Thus we obtain that for t ∈ [t1, t2),

(

x2(t) +

n−1
∑

i=1

(x(j)(t))2
)

1
2

< 1.
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For t ∈ [t1, t2), we choose a Lyapunov function

V (t) = x2(t) +

n−1
∑

i=1

(x(j)(t))2 +

N
∑

i=1

pi

β

∫ t

gi(t)

∫ t

u

x2δ(s) ds du.

Then we have

x2(t) +

n−1
∑

i=1

(x(j)(t))2 6 V (t) 6 V (t1) exp

(

2 + a + b +

N
∑

i=1

pi

β
τi

)

(t − t1)

< V (t1) exp

(

2 + a + b +
N

∑

i=1

pi

β
τi

)

(t2 − t1)

=

[

x2(t1) +

n−1
∑

i=1

(x(j)(t1))
2 +

N
∑

i=1

pi

β

∫ t1

gi(t1)

∫ t1

u

x2δ(s) ds du

]

× exp

(

2 + a + b +

N
∑

i=1

pi

β
τi

)

(t2 − t1)

6

{

d2
1

[

x2(t−1 ) +

n−1
∑

i=1

(x(j)(t−1 ))2
]

+

N
∑

i=1

pi

2β
τ2
i sup

t1−τi6t6t1

x2δ(t)

}

× exp

(

2 + a + b +
N

∑

i=1

pi

β
τi

)

(t2 − t1)

6

{

d2
1

[

x2(t−1 ) +

n−1
∑

i=1

(x(j)(t−1 ))2
]

+

N
∑

i=1

pi

2β
τ2
i sup

t1−τ6t6t1

x2(t)

}

× exp

(

2 + a + b +

N
∑

i=1

pi

β
τi

)

(t2 − t1)

6

{

d2
1 sup

t1−τ6t6t1

[

x2(t) +

n−1
∑

i=1

(x(j)(t))2
]

+

N
∑

i=1

pi

2β
τ2
i sup

t1−τ6t6t1

x2(t)

}

× exp

(

2 + a + b +
N

∑

i=1

pi

β
τi

)

(t2 − t1)

6

(

d2
1 +

N
∑

i=1

pi

2β
τ2
i

)

sup
t1−τ6t6t1

[

x2(t) +

n−1
∑

i=1

(x(j)(t))2
]

× exp

(

2 + a + b +

N
∑

i=1

pi

β
τi

)

(t2 − t1)

6 Γ1ε
2 exp[−2α(t1 − σ − τ)] exp

(

2 + a + b +

N
∑

i=1

pi

β
τi

)

(t2 − t1)

6 ε2 exp[−2α(t2 − σ)] < ε2 exp[−2α(t − σ)], t ∈ [t1, t2).
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Hence,
(

x2(t) +

n−1
∑

i=1

(x(j)(t))2
)

1
2

< ε exp[−α(t − σ)], t ∈ [t1, t2).

By the induction hypothesis, we may prove that, for k > 1,

(

x2(t) +

n−1
∑

i=1

(x(j)(t))2
)

1
2

< ε exp[−α(t − σ)], t ∈ [tk, tk+1).

Therefore, we arrive at

(

x2(t) +

n−1
∑

i=1

(x(j)(t))2
)

1
2

< ε exp[−α(t − σ)], t > σ,

and the proof is complete. �

R em a r k 2.6. Remarks 2.1–2.3 are still valid for Theorem 2.4.

3. An example

E x am p l e. Consider the equation

(3.1)











x(6)(t) + x(3)(t) + 0.9x(t) − 0.5x(t − 0.01)− 0.5x(t − 0.02)

+ a(t)x3(t − 0.015) = 0, t > 0,

x(t) = ϕ(t), −0.02 6 t 6 0, x(j)(0) = xj0, j = 1, . . . , 5,

where a(t) ∈ Γ, Γ = {s(t) ∈ [0,∞) : |s(t)| 6 0.5}.

When a(t) = 0 ∈ Γ, then its characteristic equation is

λ6 + λ3 − 0.5e−0.01λ − 0.5e−0.02λ + 0.9 = 0.

Using the software Mathematica, we obtain a characteristic root with positive real

part. Hence the non-impulsive equation (4.1) is unstable for some a(t) ∈ Γ. But if

we take β = 1, τ = λ = 0.02, α = 1
2 , pi = 0.5, i = 1, 2, 3, N = 3, then it is easy to

check that

τ

β

N
∑

i=1

pi = 0.03 < e−0.02e−0.108 = exp[−α(λ + τ)] exp

[

−
(

2 + a + b +

N
∑

i=1

pi

β

)

λ

]

< exp

[

−
(

2 + a + b +

N
∑

i=1

pi

β

)

τ

]

.
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We choose a sequence {tk}∞k=1 satisfying (A1) and tk+1 − tk = 0.02, t0 = 0, k ∈ Z+,

such that

x(tk) = dx(t−k ),

x(j)(tk) = dx(j)(t−k ), j = 1, 2, . . . , 5,

where d = min{η1 exp[0.01],
√

e−0.128 − 0.0225} and η1 depends only on the first

equation of (4.1) on [0.02, 0.04]. Then the hypotheses in Theorem 2.3 are satisfied

and hence the unstable equation (4.2) can be exponentially stabilized by periodic

impulses for all a(t) ∈ Γ.
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