Previous |  Up |  Next

Article

Title: An intersection theorem for set-valued mappings (English)
Author: Agarwal, Ravi P.
Author: Balaj, Mircea
Author: O'Regan, Donal
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 58
Issue: 3
Year: 2013
Pages: 269-278
Summary lang: English
.
Category: math
.
Summary: Given a nonempty convex set $X$ in a locally convex Hausdorff topological vector space, a nonempty set $Y$ and two set-valued mappings $T\colon X\rightrightarrows X$, $S\colon Y\rightrightarrows X$ we prove that under suitable conditions one can find an $x\in X$ which is simultaneously a fixed point for $T$ and a common point for the family of values of $S$. Applying our intersection theorem we establish a common fixed point theorem, a saddle point theorem, as well as existence results for the solutions of some equilibrium and complementarity problems. (English)
Keyword: intersection theorem
Keyword: fixed point
Keyword: saddle point
Keyword: equilibrium problem
Keyword: complementarity problem
MSC: 47H04
MSC: 47H10
MSC: 49J53
idZBL: Zbl 1275.47105
idMR: MR3066821
DOI: 10.1007/s10492-013-0013-7
.
Date available: 2013-05-17T10:42:10Z
Last updated: 2023-08-30
Stable URL: http://hdl.handle.net/10338.dmlcz/143278
.
Reference: [1] Agarwal, R. P., Balaj, M., O'Regan, D.: Common fixed point theorems and minimax inequalities in locally convex Hausdorff topological vector spaces.Appl. Anal. 88 (2009), 1691-1699. Zbl 1223.47057, MR 2588412, 10.1080/00036810903331874
Reference: [2] Aliprantis, C. D., Border, K. C.: Infinite Dimensional Analysis. A Hitchhiker's Guide. 3rd ed.Springer Berlin (2006). Zbl 1156.46001, MR 2378491
Reference: [3] Ansari, Q. H., Farajzadeh, A. P., Schaible, S.: Existence of solutions of vector variational inequalities and vector complementarity problems.J. Glob. Optim. 45 (2009), 297-307. Zbl 1226.49015, MR 2539162, 10.1007/s10898-008-9375-x
Reference: [4] Ansari, Q. H., Yao, J. C.: An existence result for the generalized vector equilibrium problem.Appl. Math. Lett. 12 (1999), 53-56. Zbl 1014.49008, MR 1751352, 10.1016/S0893-9659(99)00121-4
Reference: [5] Balaj, M.: An intersection theorem with applications in minimax theory and equilibrium problem.J. Math. Anal. Appl. 336 (2007), 363-371. Zbl 1124.49019, MR 2348511, 10.1016/j.jmaa.2007.02.065
Reference: [6] Balaj, M.: A fixed point-equilibrium theorem with applications.Bull. Belg. Math. Soc. - Simon Stevin 17 (2010), 919-928. Zbl 1213.54061, MR 2777781, 10.36045/bbms/1292334066
Reference: [7] Balaj, M., O'Regan, D.: Inclusion and intersection theorems with applications in equilibrium theory in $G$-convex spaces.J. Korean Math. Soc. 47 (2010), 1017-1029. Zbl 1203.47092, MR 2723006, 10.4134/JKMS.2010.47.5.1017
Reference: [8] Fan, K.: A generalization of Tychonoff's fixed point theorem.Math. Ann. 142 (1961), 305-310. Zbl 0093.36701, MR 0131268, 10.1007/BF01353421
Reference: [9] Farajzadeh, A. P., Noor, M. A., Zainab, S.: Mixed quasi complementarity problems in topological vector spaces.J. Glob. Optim. 45 (2009), 229-235. Zbl 1193.90204, MR 2539158, 10.1007/s10898-008-9368-9
Reference: [10] Himmelberg, C. J.: Fixed points of compact multifunctions.J. Math. Anal. Appl. 38 (1972), 205-207. Zbl 0225.54049, MR 0303368, 10.1016/0022-247X(72)90128-X
Reference: [11] Jeyakumar, V., Oettli, W., Natividad, M.: A solvability theorem for a class of quasiconvex mappings with applications to optimization.J. Math. Anal. Appl. 179 (1993), 537-546. Zbl 0791.46002, MR 1249837, 10.1006/jmaa.1993.1368
Reference: [12] Khan, S. A.: Generalized vector implicit quasi complementarity problems.J. Glob. Optim. 49 (2011), 695-705. Zbl 1242.90261, MR 2781983, 10.1007/s10898-010-9557-1
Reference: [13] Khanh, P. Q., Quan, N. H.: Intersection theorems, coincidence theorems and maximal-element theorems in $GFC$-spaces.Optimization 59 (2010), 115-124. Zbl 1185.49007, MR 2765472, 10.1080/02331930903500324
Reference: [14] Köthe, G.: Topological Vector Spaces I.Springer Berlin (1969). MR 0248498
Reference: [15] Lan, K. Q.: An intersection theorem for multivalued maps and applications.Comput. Math. Appl. 48 (2004), 725-729. Zbl 1060.49016, MR 2105247, 10.1016/j.camwa.2004.03.003
Reference: [16] Lee, B. S., Farajzadeh, A. P.: Generalized vector implicit complementarity problems with corresponding variational inequality problems.Appl. Math. Lett. 21 (2008), 1095-1100. Zbl 1211.90249, MR 2450657, 10.1016/j.aml.2007.12.008
Reference: [17] Lu, H., Tang, D.: An intersection theorem in L-convex spaces with applications.J. Math. Anal. Appl. 312 (2005), 343-356. Zbl 1090.47045, MR 2175223, 10.1016/j.jmaa.2005.03.085
.

Files

Files Size Format View
AplMat_58-2013-3_2.pdf 192.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo