Summary: Given a nonempty convex set $X$ in a locally convex Hausdorff topological vector space, a nonempty set $Y$ and two set-valued mappings $T\colon X\rightrightarrows X$, $S\colon Y\rightrightarrows X$ we prove that under suitable conditions one can find an $x\in X$ which is simultaneously a fixed point for $T$ and a common point for the family of values of $S$. Applying our intersection theorem we establish a common fixed point theorem, a saddle point theorem, as well as existence results for the solutions of some equilibrium and complementarity problems.
[1] Agarwal, R. P., Balaj, M., O'Regan, D.: Common fixed point theorems and minimax inequalities in locally convex Hausdorff topological vector spaces. Appl. Anal. 88 (2009), 1691-1699. DOI 10.1080/00036810903331874 | MR 2588412 | Zbl 1223.47057
[2] Aliprantis, C. D., Border, K. C.: Infinite Dimensional Analysis. A Hitchhiker's Guide. 3rd ed. Springer Berlin (2006). MR 2378491 | Zbl 1156.46001
[3] Ansari, Q. H., Farajzadeh, A. P., Schaible, S.: Existence of solutions of vector variational inequalities and vector complementarity problems. J. Glob. Optim. 45 (2009), 297-307. DOI 10.1007/s10898-008-9375-x | MR 2539162 | Zbl 1226.49015
[7] Balaj, M., O'Regan, D.: Inclusion and intersection theorems with applications in equilibrium theory in $G$-convex spaces. J. Korean Math. Soc. 47 (2010), 1017-1029. DOI 10.4134/JKMS.2010.47.5.1017 | MR 2723006 | Zbl 1203.47092
[11] Jeyakumar, V., Oettli, W., Natividad, M.: A solvability theorem for a class of quasiconvex mappings with applications to optimization. J. Math. Anal. Appl. 179 (1993), 537-546. DOI 10.1006/jmaa.1993.1368 | MR 1249837 | Zbl 0791.46002