[1] Ao, S.: Independent domination critical graphs. Master's Dissertation, University of Victoria (1994).
[2] Bange, D., Barkauskas, A., Slater, P.:
Efficient Dominating Sets in Graphs. Applications of Discrete Mathematics. R. D. Ringeisen, F. S. Roberts SIAM, Philadelphia, PA (1988), 189-199.
MR 0974633
[6] Fricke, G., Haynes, T., Hedetniemi, S., Hedetniemi, S., Laskar, R.:
Excellent trees. Bull. Inst. Comb. Appl. 34 (2002), 27-38.
MR 1880562 |
Zbl 0995.05036
[10] Haynes, T., Hedetniemi, S., Slater, P.:
Fundamentals of domination in graphs. Marcel Dekker, New York, NY (1998).
MR 1605684 |
Zbl 0890.05002
[13] Mojdeh, D., Firoozi, P., Hasni, R.:
On connected $(\gamma,k)$-critical graphs. Australas. J. Comb. 46 (2010), 25-35.
MR 2598690 |
Zbl 1196.05064
[14] Samodivkin, V.:
Domination with respect to nondegenerate and hereditary properties. Math. Bohem. 133 (2008), 167-178.
MR 2428312 |
Zbl 1199.05269
[17] Samodivkin, V.:
Domination with respect to nondegenerate properties: bondage number. Australas. J. Comb. 45 (2009), 217-226.
MR 2554536 |
Zbl 1207.05145
[18] Sampathkumar, E., Neeralagi, P.:
Domination and neighborhood critical fixed, free and totally free points. Sankhy\=a 54 (1992), 403-407.
MR 1234719
[19] Sumner, D., Wojcicka, E.:
Graphs critical with respect to the domination number. Domination in Graphs: Advanced Topics. T. Haynes, S. T. Hedetniemi, P. Slater Marcel Dekker, New York (1998), 471-489.
MR 1605701
[20] Teschner, U.:
A new upper bound for the bondage number of a graphs with small domination number. Australas. J. Comb. 12 (1995), 27-35.
MR 1349195
[21] Teschner, U.:
The bondage number of a graphs $G$ can be much greater than $\Delta (G)$. Ars Comb. 43 (1996), 81-87.
MR 1415976
[22] Walikar, H., Acharya, B.:
Domination critical graphs. Nat. Acad. Sci. Lett. 2 (1979), 70-72.
Zbl 0401.05056